题目链接

每层每个位置向下一层这个位置连边,流量为下一层这个位置的\(f\),源点向第一层连,流量第一层每个位置的费用,最后一层向汇点连,流量\(INF\)。

这样就得到了\(P*Q\)条链,不考虑\(D\)的限制的话求最小割就是答案。

现在加入限制。记结论吧,我也不知道什么原理

每个位置从\(i=D+1\)层开始,向他前后左右第\(i-D\)层连边,流量\(INF\)。

然后求出最小割即为答案。

#include <cstdio>
#include <queue>
#include <cstring>
#define INF 2147483647
using namespace std;
const int MAXN = 900010;
const int MAXM = 2000010;
inline int read(){
int s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9'){ if(ch == '-') w = -1; ch = getchar(); }
while(ch >= '0' && ch <= '9'){ s = s * 10 + ch - '0'; ch = getchar(); }
return s * w;
}
struct Edge{
int next, to, rest;
}e[MAXM];
int s, t, num = 1, n, m, a, b, c, p, q, r, d, f[45][45][45];
int head[MAXN];
inline void Add(int from, int to, int flow){
e[++num] = (Edge){ head[from], to, flow }; head[from] = num;
e[++num] = (Edge){ head[to], from, 0 }; head[to] = num;
}
int level[MAXN], now, sum;
queue <int> Q;
int re(){
memset(level, 0, sizeof level);
while(Q.size()) Q.pop();
Q.push(s); level[s] = 1;
while(Q.size()){
now = Q.front(); Q.pop();
for(int i = head[now]; i; i = e[i].next)
if(e[i].rest && !level[e[i].to]){
level[e[i].to] = level[now] + 1;
Q.push(e[i].to);
}
}
return level[t];
}
int findflow(int u, int flow){
if(!flow || u == t) return flow;
int f = 0, t;
for(int i = head[u]; i; i = e[i].next){
if(e[i].rest && level[e[i].to] == level[u] + 1){
f += (t = findflow(e[i].to, min(flow - f, e[i].rest)));
e[i].rest -= t; e[i ^ 1].rest += t;
}
}
if(!f) level[u] = 0;
return f;
}
int dinic(){
int ans = 0;
while(re())
ans += findflow(s, INF);
return ans;
}
int id(int k, int i, int j){
if(!k) return s;
return (k - 1) * (p * q) + (i - 1) * q + j;
}
int L[] = {233, -1, 1, 0, 0}, R[] = {666, 0, 0, -1, 1};
int main(){
p = read(); q = read(); r = read(); d = read();
s = 899999; t = 900000;
for(int i = 1; i <= p; ++i)
for(int j = 1; j <= q; ++j)
Add(id(r, i, j), t, INF);
for(int k = 1; k <= r; ++k)
for(int i = 1; i <= p; ++i)
for(int j = 1; j <= q; ++j)
Add(id(k - 1, i, j), id(k, i, j), read());
for(int i = 1; i <= p; ++i)
for(int j = 1; j <= q; ++j)
for(int k = 1; k <= 4; ++k){
int x = i + L[k], y = j + R[k];
if(!x || !y || x > p || y > q) continue;
for(int o = d + 1; o <= r; ++o)
Add(id(o, i, j), id(o - d, x, y), INF);
}
printf("%d\n", dinic());
return 0;
}

【洛谷 P3227】 [HNOI2013]切糕(最小割)的更多相关文章

  1. 洛谷 P3227 [HNOI2013]切糕(最小割)

    题解 Dinic求最小割 题目其实就是求最小的代价使得每个纵轴被分成两部分 最小割!!! 我们把每个点抽象成一条边,一个纵轴就是一条\(S-T\)的路径 但是题目要求\(|f(x,y)-f(x',y' ...

  2. [洛谷P3227][HNOI2013]切糕

    题目大意:有一个$n\times m$的切糕,每一个位置的高度可以在$[1,k]$之间,每个高度有一个代价,要求四联通的两个格子之间高度最多相差$D$,问可行的最小代价.$n,m,k,D\leqsla ...

  3. Luogu P3227 [HNOI2013]切糕 最小割

    首先推荐一个写的很好的题解,个人水平有限只能写流水账,还请见谅. 经典的最小割模型,很多人都说这个题是水题,但我还是被卡了=_= 技巧:加边表示限制 在没有距离\(<=d\)的限制时候,我们对每 ...

  4. 洛谷$P3227\ [HNOI2013]$切糕 网络流

    正解:网络流 解题报告: 传送门! 日常看不懂题系列,,,$QAQ$ 所以先放下题目大意趴$QwQ$,就说有个$p\cdot q$的矩阵,每个位置可以填一个$[1,R]$范围内的整数$a_{i,j}$ ...

  5. bzoj3144 [HNOI2013]切糕(最小割)

    bzoj3144 [HNOI2013]切糕(最小割) bzoj Luogu 题面描述见上 题解时间 一开始我真就把这玩意所说的切面当成了平面来做的 事实上只是说相邻的切点高度差都不超过 $ d $ 对 ...

  6. bzoj 3144: [Hnoi2013]切糕 最小割

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 681  Solved: 375[Submit][Status] ...

  7. 【BZOJ3144】[Hnoi2013]切糕 最小割

    [BZOJ3144][Hnoi2013]切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q ...

  8. 【洛谷P3329】 [ZJOI2011]最小割(最小割树)

    洛谷 题意: 给出一个无向图,之后有\(q,q\leq 30\)组询问,每组询问有一个\(x\),回答有多少点对\((a,b)\)其\(a-b\)最小割不超过\(x\). 思路: 这个题做法要最小割树 ...

  9. BZOJ3144[Hnoi2013]切糕——最小割

    题目描述 输入 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...

  10. bzoj 3144 [Hnoi2013]切糕——最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 一根纵轴上切一个点,可以把一根纵轴上的点连成一串来体现.自己的写法是每个点连向前一个点 ...

随机推荐

  1. 初识ES6 解构

    1.数组的解构 ES6 允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这被称为解构 例子: let [a, b, c] = [1, 2, 3]; console.log(a);//1cons ...

  2. jQuery之过滤元素

    还是那句话,这些知识一个小小的练习,更多的请看jQuery手册 在jQuery对象中的元素对象数组中过滤出一部分元素来1. first()2. last()3. eq(index|-index)4. ...

  3. SSH框架配置

    --------------------------------applicationContext.xml-------------------------------- <?xml vers ...

  4. java 数据结构与算法 之查找法

    一.二分查找法 二分查找就是将查找的键和子数组的中间键作比较,如果被查找的键小于中间键,就在左子数组继续查找:如果大于中间键,就在右子数组中查找,否则中间键就是要找的元素. @Test public ...

  5. Hibernate 中 load() 方法导致的 noSession 异常

    之所以要写这个,是因为最近碰到了一个延迟加载的 load() 导致出现 noSession 的异常. 下面第三种方式解决这个问题需要用到一个本地线程的对象,也就是 ThreadLocal 类,之前写过 ...

  6. oracle锁与死锁概念,阻塞产生的原因以及解决方案

    锁是一种机制,一直存在:死锁是一种错误,尽量避免.​ 首先,要理解锁和死锁的概念:​ 1.锁: 定义:简单的说,锁是数据库为了保证数据的一致性而存在的一种机制,其他数据库一样有,只不过实现机制上可能大 ...

  7. LDPC译码器的FPGA实现

    应用笔记 V0.0 2015/3/17 LDPC译码器的FPGA实现   概述   本文将介绍LDPC译码器的FPGA实现,译码器设计对应CCSDS131x1o1s文档中提到的适用于深空通信任务的LD ...

  8. 采用FPGA实现UART转SPI

    应用笔记 V1.1 2015/2/10 采用FPGA实现UART转SPI   概述   本文提供了实现UART转SPI的Verilog代码的功能描述.这份笔记将介绍UART和SPI的基本知识,代码设计 ...

  9. 【入门向】使用 MetaHook Plus 绘制 HUD

    MetaHook Plus 是一个GoldSrc引擎(就是的Half-Life.CS1.6的引擎)的客户端插件平台,它可以加载我们自己开发的DLL插件. 首先你需要安装一个 Visual Studio ...

  10. Eclipse如何将代码变成大写/小写

    代码变小写:选中要换的代码,操作Ctrl+Shift+y即可将大写变小写 代码变大写:选中要换的代码,操作Ctrl+Shift+x即可将小写变大写