【医学影像】《Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning》论文笔记
这篇论文的作者是张康教授为首的团队,联合国内外众多医院及科研机构,合力完成,最后发表在cell上,实至名归。
从方法的角度上来说,与上一篇博客中的论文很相似,采用的都是InceptionV3模型,同时都用了海量的数据,而海量的数据,也是我认为这两篇文章的最主要贡献。
【论文出发点】视网膜疾病困扰着成千上万人,而针对视网膜疾病的OCT技术有着大量数据,这为医生诊断带来巨大工作量,研制可媲美专业医师水平的AI系统可带来巨大便利
【论文核心】在两种不可逆的常见致盲性眼病:黄斑变性和糖尿病性视网膜病中,引入InceptionV3网络进行分类,可到达专业医生水平,具体流程图如下
【论文贡献】1.收集并标记10万张OCT图像
2.利用在ImageNet上预训练的InceptionV3进行迁移学习,训练OCT图像
3.进行遮挡实验,增加网络的可解释性
4.在X光图像上进行类似实验,证明设计的系统的通用性
下面针对这四点贡献分别解释。
1.作者首先收集了207130张OCT,但是只有108312张通过审核(具体审核标准是什么呢),其中choroidal neovascularization37206张,diabetic macular edema11349张,drusen8617张,normal51140张,这些数据来自4686个病人,那这些数据是如何标记的呢,如此大的数据量?
2.网络的训练,用论文中的两张图可很好诠释
首先是在Imagenet上预训练,模型画的略有问题,因为显然全连接是不够的
然后,迁移到OCT数据上进行微调(坦白讲,有这麽多数据完全可以对整个网络都进行调整,而不是只调整最后几层)
可以看到,输出类别共有四类,从上到下依次是脉络膜新生血管,糖尿病黄斑水肿,脉络膜小疣和正常。关于模型,就没什么好说的了。
3.遮挡实验
对上百块区域逐个遮挡,即用空白图像替代,观察分类概率的下降,对下降影响最大的,即为病灶区域,下图中发光的区域即为遮挡实验得出的病灶
4.在X光上的泛化实验
作者收集5232张X光图像,其中3883张是肺炎(2538张为细菌性,1345张为病毒性),其余1349张为正常。作者进行正常VS肺炎,细菌性肺炎VS病毒性肺炎的二分类实验,三种图像如下
【实验结果】
具体实验时,作者将 choroidal neovascularization和diabetic macular edema归为urgent referrals,即紧急转诊,需要立即由眼科医生给予治疗,一旦耽误将有致盲风险,同时将drusen归为routine referral,情况没有前者那么紧急,另外,将normal归为observation。
针对是否为urgent referral有如下的roc曲线,其中limited CNN指的是仅用1000张图片训练的结果,效果很好,可见迁移学习的威力,不然1000张图片的效果很难将inceptionV3训练的这么好
下面是四种类别的混淆矩阵,可以看到误分类的情况很低
同时作者还设计了choroidal neovascularization VS normal,diabetic macular edema VS normal,drusen VS normal三种二分类器,AUC分别达到100%,99.87%,99.96%,相当惊人。
此外,由于漏诊和误诊的代价不同,即误将病人诊断为紧急转诊,会带来不必要的诊治,但是没能识别出需要紧急转诊的情况可能带来不可逆的视力问题,所以需要为这两种情况赋予不同的权重,加权后的错误率如下
在肺炎上的表现如下,左边是正常VS肺炎,右边是细菌性肺炎VS病毒性肺炎,分别达到96.8%和94%的AUC值
【医学影像】《Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning》论文笔记的更多相关文章
- 医学影像工作站程序ProDicom的说明
转载 http://blog.csdn.net/prodicom/article/details/4015064 注意:以下内容为转载,但保留了第一人称,请注意,以免造成不必要的麻烦. 医网联影像工作 ...
- 释放至强平台 AI 加速潜能 汇医慧影打造全周期 AI 医学影像解决方案
基于英特尔架构实现软硬协同加速,显著提升新冠肺炎.乳腺癌等疾病的检测和筛查效率,并帮助医疗科研平台预防"维度灾难"问题 <PAGE 1 LEFT COLUMN: CUSTOM ...
- C#开发医学影像胶片打印系统(一):万能花式布局的实现思路
本篇文章将介绍开发医学影像胶片打印系统(printscu模式)遇到不规则排版时的一种思路, 一般来讲,医院打印胶片时都是整张胶片打印,但有时需要将多个病人或一个病人的多个检查打印在同一张胶片上, 这时 ...
- 基于cornerstone.js的dicom医学影像查看浏览功能
最近由于项目需求,需要医学影像.dcm文件的预览功能,功能完成后,基于原生Demo做一个开源分享. 心急的小伙伴可以先看如下基于原生js的全部代码: 一.全部代码 <!DOCTYPE html& ...
- AI+医疗:使用神经网络进行医学影像识别分析 ⛵
作者:韩信子@ShowMeAI 计算机视觉实战系列:https://www.showmeai.tech/tutorials/46 行业名企应用系列:https://www.showmeai.tech/ ...
- C#开发PACS医学影像三维重建(一):使用VTK重建3D影像
VTK简介: VTK是一个开源的免费软件系统,主要用于三维计算机图形学.图像处理和可视化.Vtk是在面向对象原理的基础上设计和实现的,它的内核是用C++构建的. 因为使用C#语言开发,而VTK是C++ ...
- [网摘][医学影像] DICOM 和 NIFTI 基础知识与区别
查找DICOM基础知识时,看到这篇文章里面写了一些关于使用深度学习进行医疗影像分析:文件格式篇.下文摘自:https://www.jiqizhixin.com/articles/2017-07-31 ...
- 使用医学影像开源库cornerstone.js解析Dicom图像显示到HTML中
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 【医学影像】《Dermatologist-level classification of skin cancer with deep neural networks》论文笔记
这是一篇关于皮肤癌分类的文章,核心就是分类器,由斯坦福大学团队发表,居然发到了nature上,让我惊讶又佩服,虽然在方法上没什么大的创新,但是论文本身的工作却意义重大,并且这篇17年见刊的文章,引用量 ...
随机推荐
- WebAPI的路由规则
1.自定义路由 public static class WebApiConfig { public static void Register(HttpConfiguration config) { / ...
- Metadata Service 最高频的应用 - 每天5分钟玩转 OpenStack(164)
实现 instance 定制化,cloud-init(或 cloudbase-init)只是故事的一半,metadata service 则是故事的的另一半.两者的分工是:metadata servi ...
- code1744 方格染色
稍微复杂一点的划分dp 设f[i][j][k]为第i行前j个k次粉刷正确的最大值 由于每行循环使用,可以去掉第一维,但每次不要忘了清零(卡了好久) f[j][k]=max{ f[u][j-1] + m ...
- 实践作业3:白盒测试----junit的难点DAY11.
本次白盒测试 需要独立完成整个项目和工具的配置安装运行操作,并编写.运行测试脚本,并完成实验的一些小细节等等. 首先,导入Junit测试框架所需的Jar包 然后编写测试脚本,为.java运行程序,见打 ...
- springmvc框架简单搭建
一.利用xml 配置 1.web.xml <web-app version="2.4" xmlns="http://java.sun.com/xml/n ...
- 更改oracle数据库字符集
A.oracle server 端 字符集查询 select userenv('language') from dual 其中NLS_CHARACTERSET 为server端字符集 NLS_LAN ...
- Gym - 100971J ——DFS
Statements Vitaly works at the warehouse. The warehouse can be represented as a grid of n × mcells, ...
- sqlite3使用详解(Qt版本)
初始化sqlite3 (创建表) QString url = QDir::currentPath() + QString::fromLocal8Bit("/Msg.db"); bo ...
- opencv——设置ROI区域
#include "stdafx.h" #include<opencv2\opencv.hpp> #include<opencv\cv.h> #includ ...
- Android自定义组件之自动换行及宽度自适应View:WordWrapView
目的: 自定义一个ViewGroup,里面的子view都是TextView,每个子view TextView的宽度随内容自适应且每行的子View的个数自适应,并可以自动换行 一:效果图 二:代码 整 ...