P1233 木棍加工

题目描述

一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的。棍子可以被一台机器一个接一个地加工。机器处理一根棍子之前需要准备时间。准备时间是这样定义的:

第一根棍子的准备时间为1分钟;

如果刚处理完长度为L,宽度为W的棍子,那么如果下一个棍子长度为Li,宽度为Wi,并且满足L>=Li,W>=Wi,这个棍子就不需要准备时间,否则需要1分钟的准备时间;

计算处理完n根棍子所需要的最短准备时间。比如,你有5根棍子,长度和宽度分别为(4, 9),(5, 2),(2, 1),(3, 5),(1, 4),最短准备时间为2(按(4, 9)、(3, 5)、(1, 4)、(5, 2)、(2, 1)的次序进行加工)。

输入输出格式

输入格式:

第一行是一个整数n(n<=5000),第2行是2n个整数,分别是L1,W1,L2,w2,…,Ln,Wn。L和W的值均不超过10000,相邻两数之间用空格分开。

输出格式:

仅一行,一个整数,所需要的最短准备时间。

输入输出样例

输入样例#1:

5
4 9 5 2 2 1 3 5 1 4
输出样例#1:

2

拿到这道题,第一思路:暴力,用骚操作优化一下,说不定会快的飞起呢!!!
但实际上,只要稍微一思考,就会发现这就是一道赤裸裸的dp啊。
我们进一步分析,会发现,要同时满足l0>l1,w0>w1,就说明它有两种属性,傻子都看的出这题的贪心就是使序列满足两种属性的同时,尽可能多的
找出最长上升子序列,对不对?
同时又由于dilworth定理我们知道,同一个序列里,最长上升子序列的个数就等于最长不上升子序列的长度,所以我们又把问题装换成了求最长不上升子序列
我相信大家一定都会O(nlogn)算法来求,对不对?
所以我在此不再赘述。
但是还有一个问题,如何处理双重属性的问题,我们有一个通用的方法,就是将其中的一重属性排序,来求另一重的目标序列,这个东西啊,我讲也讲不清楚
自己多体会体会,再用一些骚操作,我相信你会明白的,对不对?
诺,下面是代码(我用STL写的)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 5000+5 using namespace std; int n,f[maxn];
struct stack{
int l,w;
}s[maxn]; bool cmp(const stack &a,const stack &b)
{
return a.l>b.l;
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d",&s[i].l,&s[i].w); sort(s+,s++n,cmp);//给属性降维
/*求最长不上升子序列*/
int len=;
for(int i=;i<=n;i++)
{
if(s[i].w>f[len])
{
f[++len]=s[i].w;
}
else{
int k=lower_bound(f+,f++len,s[i].w)-f;
f[k]=s[i].w;
}
}
printf("%d",len);
//长度即使答案。 return ;
}
我还是很蒟蒻的,所以如果有任何漏洞的话,还请读者大老爷们指出QAQ
谢谢大家!……!

dilworth定理+属性排序(木棍加工)的更多相关文章

  1. 洛谷P1233 木棍加工【单调栈】

    题目:https://www.luogu.org/problemnew/show/P1233 题意: 有n根木棍,每根木棍有长度和宽度. 现在要求按某种顺序加工木棍,如果前一根木棍的长度和宽度都大于现 ...

  2. Dilworth定理

    来自网络的解释: 定理内容及其证明过程数学不好看不懂. 通俗解释: 把一个数列划分成最少的最长不升子序列的数目就等于这个数列的最长上升子序列的长度(LIS) EXAMPLE 1   HDU 1257 ...

  3. 洛谷 P1233 木棍加工 解题报告

    P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间 ...

  4. 木棍加工(dp,两个参数的导弹拦截问题)

    题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的:     第一根棍子的准备时间为1分钟:   ...

  5. Luogu P1233 木棍加工 【贪心/LIS】

    题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理 ...

  6. POJ - 1065 Wooden Sticks(贪心+dp+最长递减子序列+Dilworth定理)

    题意:给定n个木棍的l和w,第一个木棍需要1min安装时间,若木棍(l’,w’)满足l' >= l, w' >= w,则不需要花费额外的安装时间,否则需要花费1min安装时间,求安装n个木 ...

  7. hdu1051(LIS | Dilworth定理)

    这题根据的Dilworth定理,链的最小个数=反链的最大长度 , 然后就是排序LIS了 链-反链-Dilworth定理 hdu1051 #include <iostream> #inclu ...

  8. 洛谷P1233 木棍加工题解 LIS

    突然发现自己把原来学的LIS都忘完了,正好碰见这一道题.|-_-| \(LIS\),也就是最长上升子序列,也就是序列中元素严格单调递增,这个东西有\(n^{2}\)和\(nlog_{2}n\)两种算法 ...

  9. 【XSY2727】Remove Dilworth定理 堆 树状数组 DP

    题目描述 一个二维平面上有\(n\)个梯形,满足: 所有梯形的下底边在直线\(y=0\)上. 所有梯形的上底边在直线\(y=1\)上. 没有两个点的坐标相同. 你一次可以选择任意多个梯形,必须满足这些 ...

随机推荐

  1. qemu-nbd方式挂载qcow2镜像

    客户端配置 加载nbd模块 [root@centos sm]# rmmod nbd [root@centos sm]# modprobe nbd max_part=8 映射服务器的块设备到本地nbd设 ...

  2. 利用Masscan批量生成随机ip地址表

    简介 Masscan是Kali下集成的高效扫描器,和nmap命令有很多相似之处 命令生成随机ip masscan -sL 10.0.0.0/24 > c段.txt masscan -sL 10. ...

  3. tomcat结合httpd和nginx

    httpd结合tomcat: 前提:httpd版本2.4以上,编译安装 httpd:192.168.223.136 tomcat:192.168.223.146 tomcat简单创建一个额外的weba ...

  4. 20145335郝昊《java程序设计》第5周学习总结

    20145335郝昊<Java程序设计>第5周学习总结 教材学习内容总结 第八章 语法与继承架构 使用try.catch 特点: - 使用try.catch语法,JVM会尝试执行try区块 ...

  5. [CF730J]Bottles

    题目大意:每个瓶子有一定的容积,以及一定的水量,问最少几个瓶子装满所有水,在此基础上还要最小化移动水的体积 第一问用贪心直接求第二问转化成背包问题设dp[i][j]表示前i桶水总容积为j的最多水量,这 ...

  6. SpringBoot集成Mybatis-PageHelper分页工具类,实现3步完成分页

    在Mybatis中,如果想实现分页是比较麻烦的,首先需要先查询出总的条数,然后再修改mapper.xml,为sql添加limit指令. 幸运的是现在已经不需要这么麻烦了,刘大牛实现了一个超牛的分页工具 ...

  7. Linux 动态链接库包含静态链接库的方法

    今天老司机们在讨论一个编译问题  A是一个静态库  C是一个动态库  B是运行程序,能不能将A打包到C 然后B只需要链接C 就可以了. 这个问题我以前在出来zlib库版本冲突的时候有点印象,所以写了个 ...

  8. MapReduce实现共同朋友问题

    答案: package com.duking.mapreduce; import java.io.IOException; import java.util.Set; import java.util ...

  9. spring MVC 及 AOP 原理

    SpringMVC工作原理https://www.cnblogs.com/xiaoxi/p/6164383.htmlspring MVC 原理https://blog.csdn.net/y199108 ...

  10. git-svn — 让git和svn协同工作

     git-svn — 让git和svn协同工作 svn作为一个优秀源码版本的管理工具,可以适合绝大多数项目.但是因为它的采用中心化管理,不可避免的存在本地代码的备份和版本管理问题.也就是说对于尚未或暂 ...