1016: [JSOI2008]最小生成树计数

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 5292  Solved: 2163
[Submit][Status][Discuss]

Description

  现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。

Input

  第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。

Output

  输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。

Sample Input

4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1

Sample Output

8

HINT

 
思路:
首先我不会Matrix-Tree定理额,先说一下朴素的写法。不过在说写法之前,一定得知道这个性质:最小生成树如果存在多棵,那么这些生成树的所有的权值(乃至该权值所对应的边的数目)都是相同的
做法:
首先找到一棵最小生成树,然后我们就知道这个生成树中每个权值所需要的边的数目。然后我们从最小的边开始,每次对权值相同的边进行dfs,统计出有多少种覆盖类型cnt1,然后再从次小的边进行dfs,统计出cnt2,然后最后的ans=cnt1*cnt2*...%mod。之所以可以这样做是因为,所有权值小的边所构成的集合一定是固定的集合(谈心的思想)。
然后我理解了。。。就没有敲代码了,具体想看的话就看这个人的代码吧:戳这里
 
 
然后晚上补 Matrix-Tree
 
 
 
 
 

最小生成树的边的概念问题!!! 最小生成树的计数 bzoj 1016的更多相关文章

  1. 最小生成树计数 bzoj 1016

    最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...

  2. BZOJ 1016 【JSOI2008】 最小生成树计数

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  3. 1016: [JSOI2008]最小生成树计数 - BZOJ

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  4. [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】

    题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...

  5. BZOJ 1016 最小生成树计数

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  6. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  7. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  8. 【BZOJ 1016】【JSOI 2008】最小生成树计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=1016 统计每一个边权在最小生成树中使用的次数,这个次数在任何一个最小生成树中都是固定的(归纳证明). ...

  9. [BZOJ]1016 JSOI2008 最小生成树计数

    最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...

随机推荐

  1. 软工第十二周个人PSP

    11.30--12.6本周例行报告 1.PSP(personal software process )个人软件过程. C(类别) C(内容) ST(开始时间) ET(结束时间) INT(间隔时间) Δ ...

  2. 2014-2015 ACM-ICPC, NEERC, Eastern Subregional Contest Problem G. The Debut Album

    题目来源:http://codeforces.com/group/aUVPeyEnI2/contest/229669 时间限制:1s 空间限制:64MB 题目大意:给定n,a,b的值 求一个长度为n的 ...

  3. HDU 5501 The Highest Mark

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5501 The Highest Mark  Accepts: 32  Submissions: 193 ...

  4. lintcode-384-最长无重复字符的子串

    384-最长无重复字符的子串 给定一个字符串,请找出其中无重复字符的最长子字符串. 样例 例如,在"abcabcbb"中,其无重复字符的最长子字符串是"abc" ...

  5. C#高级编程 (第六版) 学习 第二章:C#基础

    第二章 基础 1,helloworld示例: helloworld.cs using System; using System.Collections.Generic; using System.Li ...

  6. webpack打包多html开发案例新

    闲来无事在原来简单打包案例的基础上,参考vue-cli的打包代码,改为多文件打包. 区别于上篇文章<webpack打包多html开发案例>,此次打包根据开发的不同环节进行打包,也就是有开发 ...

  7. 设计模式PHP篇(三)————装饰器模式

    简单的用php实现了装饰器模式: <?php /** *简单的装饰器模式 */ class PrintText { protected $decorators = []; public func ...

  8. 第209天:jQuery运动框架封装(二)

    运动框架 一.函数------单物体运动框架封装 1.基于时间的运动原理 动画时间进程 动画距离进程 图解: 物体从0移动到400 当物体移动到200的时候 走了50% 同样的,物体总共运行需要4秒 ...

  9. 第191天:js---Array常用属性和方法总结

    Array---常用属性和方法总结 1.Array对象构造函数 /*Array对象构造函数*/ /*组合记忆 shift unshift pop push 添加和删除 shift unshift 从数 ...

  10. 第114天:Ajax跨域请求解决方法(二)

    一.什么是跨域 我们先回顾一下域名地址的组成: http:// www . google : 8080 / script/jquery.js   http:// (协议号)       www  (子 ...