背景

python 的unittest 没有自带数据驱动功能。

所以如果使用unittest,同时又想使用数据驱动,那么就可以使用DDT来完成。

DDT是 “Data-Driven Tests”的缩写。

资料:http://ddt.readthedocs.io/en/latest/

使用方法

dd.ddt:

装饰类,也就是继承自TestCase的类。

ddt.data:

装饰测试方法。参数是一系列的值。

ddt.file_data:

装饰测试方法。参数是文件名。文件可以是json 或者 yaml类型。

注意,如果文件以”.yml”或者”.yaml”结尾,ddt会作为yaml类型处理,其他所有文件都会作为json文件处理。

如果文件中是列表,每个列表的值会作为测试用例参数,同时作为测试用例方法名后缀显示。

如果文件中是字典,字典的key会作为测试用例方法的后缀显示,字典的值会作为测试用例参数。

ddt.unpack:

传递的是复杂的数据结构时使用。比如使用元组或者列表,添加unpack之后,ddt会自动把元组或者列表对应到多个参数上。字典也可以这样处理。参见下面的示例2.

测试用例方法名生成规则

使用ddt后,会产生一个新的测试用例方法名:之前的测试用例方法名_ordinal_data

之前的测试用例方法名:即定义的测试用例方法名。比如def test_large(),这里就是test_large

ordinal:整数,从1开始递加。

data:如果传递过来的数据存在__name__属性,则这里就是该数据的__name__值。如果未定义__name__属性,ddt会尽量将传递过来的数据转化为python标识符,作为data显示。比如(3,2)就转化为3_2。需要注意的是,如果数据是字典,则这里就是字典的key。

使用示例

1. data直接放入数值

需要导入ddt包,然后再TestCase类上采用@ddt进行装饰,测试方法上装饰@data()。

data可以是数值,也可以是字符串。

import unittest
from ddt import ddt, data
from ddt_demo.mycode import larger_than_two @ddt
class FooTestCase(unittest.TestCase): @data(3, 4, 12, 23)
def test_larger_than_two(self, value):
self.assertTrue(larger_than_two(value)) @data(1, -3, 2, 0)
def test_not_larger_than_two(self, value):
self.assertFalse(larger_than_two(value)) @data(u'ascii', u'non-ascii-\N{SNOWMAN}')
def test_unicode(self, value):
self.assertIn(value, (u'ascii', u'non-ascii-\N{SNOWMAN}')) if __name__=='__main__':
unittest.main(verbosity=2)

输出如下:

test_larger_than_two_1_3 (__main__.FooTestCase) ... ok
test_larger_than_two_2_4 (__main__.FooTestCase) ... ok
test_larger_than_two_3_12 (__main__.FooTestCase) ... ok
test_larger_than_two_4_23 (__main__.FooTestCase) ... ok
test_not_larger_than_two_1_1 (__main__.FooTestCase) ... ok
test_not_larger_than_two_2__3 (__main__.FooTestCase) ... ok
test_not_larger_than_two_3_2 (__main__.FooTestCase) ... ok
test_not_larger_than_two_4_0 (__main__.FooTestCase) ... ok
test_unicode_1_ascii (__main__.FooTestCase) ... ok
test_unicode_2_non_ascii__ (__main__.FooTestCase) ... ok ----------------------------------------------------------------------
Ran 10 tests in 0.001s OK

可以看到上面只写了3个测试方法,但是最后run了10个用例。

这里测试方法后会被ddt加一个后缀,ddt会尝试把测试数据转化为后缀附在测试方法后,组成一个新的名字。

2. data放入复杂的数据结构

使用复杂的数据结构时,需要用到@unpack,同时测试方法的参数需要使用对应的多个,比如下面的frist_value 以及 second_value。

import unittest
from ddt import ddt, data,unpack @ddt
class FooTestCase(unittest.TestCase): @data((3, 2), (4, 3), (5, 3))
@unpack
def test_tuples_extracted_into_arguments(self, first_value, second_value):
self.assertTrue(first_value > second_value) @data([3, 2], [4, 3], [5, 3])
@unpack
def test_list_extracted_into_arguments(self, first_value, second_value):
self.assertTrue(first_value > second_value) @unpack
@data({'first': 1, 'second': 3, 'third': 2},
{'first': 4, 'second': 6, 'third': 5})
def test_dicts_extracted_into_kwargs(self, first, second, third):
self.assertTrue(first < third < second) if __name__=='__main__':
unittest.main(verbosity=2)

执行之后,全部pass。

3. 使用json文件

新建文件 test_data_list.json:

[
"Hello",
"Goodbye"
]

新建文件  test_data_dict.json:

{
"unsorted_list": [ 10, 12, 15 ],
"sorted_list": [ 15, 12, 50 ]
}

新建测试脚本ddt_test.py:

import unittest
from ddt import ddt, file_data
from ddt_demo.mycode import has_three_elements,is_a_greeting @ddt
class FooTestCase(unittest.TestCase): @file_data('test_data_dict.json')
def test_file_data_json_dict(self, value):
self.assertTrue(has_three_elements(value)) @file_data('test_data_list.json')
def test_file_data_json_list(self, value):
self.assertTrue(is_a_greeting(value)) if __name__=='__main__':
unittest.main(verbosity=2)

4. 使用yaml文件

新建文件 test_data_list.yaml:

- "Hello"
- "Goodbye"

新建文件 test_data_dict.yaml:

unsorted_list:
- 10
- 15
- 12 sorted_list: [ 15, 12, 50 ]

新建测试脚本ddt_test.py:

import unittest
from ddt import ddt, file_data
from ddt_demo.mycode import has_three_elements,is_a_greeting @ddt
class FooTestCase(unittest.TestCase): @file_data('test_data_dict.yaml')
def test_file_data_yaml_dict(self, value):
self.assertTrue(has_three_elements(value)) @file_data('test_data_list.yaml')
def test_file_data_yaml_list(self, value):
self.assertTrue(is_a_greeting(value)) if __name__=='__main__':
unittest.main(verbosity=2)

Python 数据驱动工具:DDT的更多相关文章

  1. 【webdriver自动化】Python数据驱动工具DDT

    一.Python数据驱动工具ddt 1.  安装 ddt pip install ddt DDT是 “Data-Driven Tests”的缩写 资料:http://ddt.readthedocs.i ...

  2. Python 数据驱动 unittest + ddt

    一数据驱动测试的含义: 在百度百科上的解释是: 数据驱动测试,即黑盒测试(Black-box Testing),又称为功能测试,是把测试对象看作一个黑盒子.利用黑盒测试法进行动态测试时,需要测试软件产 ...

  3. python - 数据驱动测试 - ddt

    # -*- coding:utf-8 -*- ''' @project: jiaxy @author: Jimmy @file: study_ddt.py @ide: PyCharm Communit ...

  4. python 数据驱动(ddt)

    DDT包含类的装饰器ddt和两个方法装饰器data(直接输入测试数据),file_data(可以从json或者yaml中获取测试数据) 实例代码: import ddt import unittest ...

  5. Python+Selenium+Unittest+Ddt+HTMLReport分布式数据驱动自动化测试框架结构

    1.Business:公共业务模块,如登录模块,可以把登录模块进行封装供调用 ------login_business.py from Page_Object.Common_Page.login_pa ...

  6. Python数据驱动DDT的应用

    在开始之前,我们先来明确一下什么是数据驱动,在百度百科中数据驱动的解释是:数据驱动测试,即黑盒测试(Black-box Testing),又称为功能测试,是把测试对象看作一个黑盒子.利用黑盒测试法进行 ...

  7. 【Machine Learning】Python开发工具:Anaconda+Sublime

    Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...

  8. Python开发工具PyCharm个性化设置(图解)

    Python开发工具PyCharm个性化设置,包括设置默认PyCharm解析器.设置缩进符为制表符.设置IDE皮肤主题等,大家参考使用吧. JetBrains PyCharm Pro 4.5.3 中文 ...

  9. 下破解安装Python开发工具WingIDE4.1

    步骤: 1.将系统时间调整到一个月之前,然后执行安装. 可以使用date命令调整系统时间,如:date -s '2012-08-14 10:00:00' 2.安装成功后,打开程序,按照提示信息,申请一 ...

随机推荐

  1. 「WC2010」重建计划(长链剖分/点分治)

    「WC2010」重建计划(长链剖分/点分治) 题目描述 有一棵大小为 \(n\) 的树,给定 \(L, R\) ,要求找到一条长度在 \([L, R]\) 的路径,并且路径上边权的平均值最大 \(1 ...

  2. (转载)打破某些大牛比较呵呵的MySQL无file权限读root hash的谣言

    如题.比如乌云社区发帖的这位大牛http://zone.wooyun.org/content/12432 看那帖子标题就很喜感有木有,大概意思就是创建了一个没有file权限的账户test,然后不能lo ...

  3. Spring整合Mybatis案例,献给初学的朋友

    今天我们来学习Spring整合Mybatis. 开发环境:Ide:MyEclipse 2017 CI JDK:1.8 首先我们简单的认识下这两个框架 1.Mybatis MyBatis是一个支持普通S ...

  4. 【洛谷】1972:[SDOI2009]HH的项链【莫队+树状数组】

    P1972 [SDOI2009]HH的项链 题目背景 无 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含 ...

  5. php 对二维数组的某个字段公用排序的方法

    function array_sort($arr ,$keys,$order=0){ if(!is_array($arr)){ return false; } $keysvalue=array(); ...

  6. Java容器-引用数据类型排序+TreeSet、TreeMap底层实现

    目录 1.冒泡排序的实现 2.比较接口(普通数据类型.引用数据类型) 普通数据类型:冒泡排序 引用数据类型:包装类(Integer.String.Character.Date) 自定义类型:实体类:i ...

  7. [转]如何在Windows Server 2012中安装.Net Framework 3.5?

    http://www.cnblogs.com/westsource/archive/2012/12/26/2834876.html If you have Windows Server 2012 is ...

  8. STN1110 Multiprotocol OBD to UART Interpreter

    http://www.obdsol.com/stn1110/ Safe, secure bootloader. Reflash the firmware in the field, even over ...

  9. Spring自动装配Beans

    在Spring框架,可以用 auto-wiring 功能会自动装配Bean.要启用它,只需要在 <bean>定义“autowire”属性. <bean id="custom ...

  10. lua中遍历table的几种方式比较

    当我在工作中使用lua进行开发时,发现在lua中有4种方式遍历一个table,当然,从本质上来说其实都一样,只是形式不同,这四种方式分别是: for key, value in pairs(tbtes ...