POJ1733 Parity game


Description

Now and then you play the following game with your friend. Your friend writes down a sequence consisting of zeroes and ones. You choose a continuous subsequence (for example the subsequence from the third to the fifth digit inclusively) and ask him, whether this subsequence contains even or odd number of ones. Your friend answers your question and you can ask him about another subsequence and so on. Your task is to guess the entire sequence of numbers.

You suspect some of your friend’s answers may not be correct and you want to convict him of falsehood. Thus you have decided to write a program to help you in this matter. The program will receive a series of your questions together with the answers you have received from your friend. The aim of this program is to find the first answer which is provably wrong, i.e. that there exists a sequence satisfying answers to all the previous questions, but no such sequence satisfies this answer.

Input

The first line of input contains one number, which is the length of the sequence of zeroes and ones. This length is less or equal to 1000000000. In the second line, there is one positive integer which is the number of questions asked and answers to them. The number of questions and answers is less or equal to 5000. The remaining lines specify questions and answers. Each line contains one question and the answer to this question: two integers (the position of the first and last digit in the chosen subsequence) and one word which is either even or odd (the answer, i.e. the parity of the number of ones in the chosen subsequence, where even means an even number of ones and odd means an odd number).

Output

There is only one line in output containing one integer X. Number X says that there exists a sequence of zeroes and ones satisfying first X parity conditions, but there exists none satisfying X+1 conditions. If there exists a sequence of zeroes and ones satisfying all the given conditions, then number X should be the number of all the questions asked.

Sample Input

10

5

1 2 even

3 4 odd

5 6 even

1 6 even

7 10 odd

Sample Output

3


题意:

告诉你有一个长度为L的01串

然后告诉你n个询问和结果

询问一个区间中的1的个数是计数还是偶数

然后给出答案

问你前多少个答案是合法的

然后%yyf大神的并查集

我们可以把1的个数转化成前缀

然后对于一个区间[l,r]" role="presentation">[l,r][l,r],我们把它分成l-1和r,然后如果区间内是奇数,l-1和r奇偶性不同,如果是偶数,则这两个点的奇偶性相同

然后我们可以用带权并查集来维护

对于这道题就在并查集维护的时候把奇偶关系异或压缩一下就好了

然后判断一下当前的奇偶关系合不合法就好了


#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define N 10010
#define pi pair<int,int>
#define f first
#define s second
int L,n,tot=0;
char str[10];
pi p[N],fa[N];
int pre[N];
bool relation[N];
int find(int x){
if(fa[x].f==x)return x;
int lastfa=fa[x].f;
fa[x].f=find(fa[x].f);
fa[x].s^=fa[lastfa].s;
return fa[x].f;
}
int main(){
scanf("%d%d",&L,&n);
for(int i=1;i<=n;i++){
scanf("%d%d%s",&p[i].f,&p[i].s,str);
p[i].f--;
pre[++tot]=p[i].f;
pre[++tot]=p[i].s;
relation[i]=(str[0]=='o');
}
sort(pre+1,pre+tot+1);
tot=unique(pre+1,pre+tot+1)-pre-1;
for(int i=1;i<=n;i++){
p[i].f=lower_bound(pre+1,pre+tot+1,p[i].f)-pre;
p[i].s=lower_bound(pre+1,pre+tot+1,p[i].s)-pre;
}
for(int i=1;i<=tot;i++)fa[i].f=i,fa[i].s=0;
for(int i=1;i<=n;i++){
int fa1=find(p[i].f),fa2=find(p[i].s);
if(fa1==fa2){
int tmp1=fa[p[i].f].s;
int tmp2=fa[p[i].s].s;
if((fa[p[i].f].s^fa[p[i].s].s)!=relation[i]){
printf("%d",i-1);
return 0;
}
}else{
fa[fa1].s=relation[i]^fa[p[i].f].s;
fa[fa1].f=p[i].s;
}
}
printf("%d",n);
return 0;
}

POJ1733 Parity game 【带权并查集】*的更多相关文章

  1. poj1733 Parity game[带权并查集or扩展域]

    地址 连通性判定问题.(具体参考lyd并查集专题该题的转化方法,反正我菜我没想出来).转化后就是一个经典的并查集问题了. 带权:要求两点奇偶性不同,即连边权为1,否则为0,压缩路径时不断异或,可以通过 ...

  2. URAL - 1003:Parity (带权并查集&2-sat)

    Now and then you play the following game with your friend. Your friend writes down a sequence consis ...

  3. POJ1733 Party game [带权并查集or扩展域并查集]

    题目传送 Parity game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10870   Accepted: 4182 ...

  4. POJ 1773 Parity game 带权并查集

    分析:带权并查集,就是维护一堆关系 然后就是带权并查集的三步 1:首先确定权值数组,sum[i]代表父节点到子节点之间的1的个数(当然路径压缩后代表到根节点的个数) 1代表是奇数个,0代表偶数个 2: ...

  5. POJ 1733 Parity game (带权并查集)

    题意:有序列A[1..N],其元素值为0或1.有M条信息,每条信息表示区间[L,R]中1的个数为偶数或奇数个,但是可能有错误的信息.求最多满足前多少条信息. 分析:区间统计的带权并查集,只是本题中路径 ...

  6. 【poj1733】Parity game--边带权并查集

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15776   Accepted: 5964 Description Now ...

  7. POJ1733:Parity Game(离散化+带权并查集)

    Parity Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12853   Accepted: 4957 题目链接 ...

  8. Poj1733 Parity Game(带权并查集)

    题面 Poj 题解 反正只要你判断是否满足区间的奇偶性,假设每一位要么是\(1\)要么是\(0\)好了. 假设有\(S\)的前缀和为\(sum[]\),则有: 若\(S[l...r]\)中有奇数个\( ...

  9. POJ-1733 Parity game(带权并查集区间合并)

    http://poj.org/problem?id=1733 题目描述 你和你的朋友玩一个游戏.你的朋友写下来一连串的0或者1.你选择一个连续的子序列然后问他,这个子序列包含1的个数是奇数还是偶数.你 ...

随机推荐

  1. HDU 1827 Summer Holiday

    http://acm.hdu.edu.cn/showproblem.php?pid=1827 题意: 听说lcy帮大家预定了新马泰7日游,Wiskey真是高兴的夜不能寐啊,他想着得快点把这消息告诉大家 ...

  2. 机器学习笔记—Logistic 回归

    前面我们介绍了线性回归,为捕获训练集中隐藏的线性模型,提高预测准确率,我们寻找最佳参数 θ,使得预测值与真实值误差尽量小,也就是使均方误差最小.而经过验证,最小均方误差是符合最大似然估计理论的. 在 ...

  3. uva 1619 - Feel Good || poj 2796 单调栈

    1619 - Feel Good Time limit: 3.000 seconds   Bill is developing a new mathematical theory for human ...

  4. switchhosts使用技巧

    https://jingyan.baidu.com/article/1974b289a3cfd1f4b0f7744d.html

  5. 【nginx】一台nginx服务器多域名配置

    Nginx 多域名配置 nginx绑定多个域名可又把多个域名规则写一个配置文件里,也可又分别建立多个域名配置文件,我一般为了管理方便,每个域名建一个文件,有些同类域名也可又写在一个总的配置文件里.一. ...

  6. git bash 出显错误不能用,怎么解决

    解决方法: 好像就是64的会出问题,其实32位的git也可以安装在64位的系统上. 将你64位的git卸掉了后,下载一个32位的git安装,就可以正常使用了, 当然,你的32位的出了错,卸了后也这样处 ...

  7. DataContext的在控件树上的传递

    控件树,在树上的每一个分支,包括叶子(比如:grid,stackpanel,lable,TextBlock)等,都有DataContext属性,并且该值可以实现从“外层”向内层传递 <Grid ...

  8. [nodejs]国内npm安装nodejs modules失败的几个解决方案

    使用npm安装node模块时经常有卡住安装失败的情况,如图所示.原因在于npm服务器在美国,还有就是某强大的防火墙作用.这样的问题导致很多新手放弃使用node,几乎每天都有新手再问这个问题.现在分享一 ...

  9. nyoj744——异或(sb题)

    蚂蚁的难题(一) 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 小蚂蚁童鞋最近迷上了位运算,他感觉位运算非常神奇.不过他最近遇到了一个难题: 给定一个区间[a,b] ...

  10. TCP的time_wait、close_wait状态

    转载:http://huoding.com/2013/12/31/316  http://blog.csdn.net/lxnkobe/article/details/7525317  http://k ...