【刷题记录】 && 【算法杂谈】折半枚举与upper_bound 和 lower_bound
【什么是upper_bound 和 lower_bound】
简单来说lower_bound就是你给他一个非递减数列[first,last)和x,它给你返回非递减序列[first, last)中的第一个大于等于值x的位置。
而upper_bound就是你给他一个非递减数列[first,last)和x,它给你返回非递减序列[first, last)中的第一个大于值x的位置。
STL中实现这两种函数的算法就是二分。。。。。。
【upper_bound 和 lower_bound代码】
//STl中的lower_bound源代码
//这个算法中,first是最终要返回的位置
int lower_bound(int *array, int size, int key)
{
int first = 0, middle;
int half, len;
len = size; while(len > 0)
{
half = len >> 1;
middle = first + half;
if(array[middle] < key)
{
first = middle + 1;
len = len-half-1; //在右边子序列中查找
}
else
len = half; //在左边子序列(包含middle)中查找
}
return first;
}
//——————————upper_bound——————————————————
int upper_bound(int *array, int size, int key)
{
int first = 0, len = size-1;
int half, middle; while(len > 0){
half = len >> 1;
middle = first + half;
if(array[middle] > key) //中位数大于key,在包含last的左半边序列中查找。
len = half;
else{
first = middle + 1; //中位数小于等于key,在右半边序列中查找。
len = len - half - 1;
}
}
return first;
}
//______________End___________________________________________________________
【POJ 2785】
【题目原文】
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
【题目大意】
给定各有n个整数的4个数列A,B,C,D。要从每一个数列中各去出一个数,使四个数的和为0.求出这样组合的个数。(当同一数列中有相同数字时按不同数字看待——博主注)
【输入描述】
有n行,一行4个数,分别是A[i],B[i],C[i],D[i]
【输入样例】
6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45
【输出描述】
一个数
【输出样例】
5
【博主注释】
有5种情况,分别是-45-27+42+30 26+30-10-46 -32+22+56-46 -32+30-75+77 -32-54+56+36
【题目分析】
我们把这些数对半分成AB与CD考虑。先从AB中取出a[i],b[i]后,为了使总和为0则需要从CD中取出c[i]+d[i]=a[i]-d[i]。因此将这些情况枚举出来,再用upper_bound和lower_bound进行二分即可。时间复杂度为O(n^2 logn)
【代码】
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=4001;
int n;
int a[maxn],b[maxn],c[maxn],d[maxn];
int cd[16000001];
int lower_bound(int *array, int size, int key)
{
int first = 0, middle;
int half, len;
len = size;
while(len > 0)
{
half = len >> 1;
middle = first + half;
if(array[middle] < key)
{
first = middle + 1;
len = len-half-1; //在右边子序列中查 找
}
else
len = half; //在左边子序列(包含middle)中查找
}
return first;
}
int upper_bound(int *array, int size, int key)
{
int first = 0, len = size-1;
int half, middle;
while(len > 0)
{
half = len >> 1;
middle = first + half;
if(array[middle] > key) len = half; //中位数大于key,在包含last的左半边序列中查找.
else
{
first = middle + 1; //中位数小于等于key,在右半边序列中查找。
len = len - half - 1;
}
}
return first;
}
int main()
{
cin>>n;
for(int i=0;i<n;i++) cin>>a[i]>>b[i]>>c[i]>>d[i];
//for(int i=0;i<n;i++) cin>>b[i];
//for(int i=0;i<n;i++) cin>>c[i];
//for(int i=0;i<n;i++) cin>>d[i];
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++) cd[i*n+j]=c[i]+d[j];
}
sort(cd,cd+n*n);
long long res=0;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
int CD=-(a[i]+b[j]);
res+=upper_bound(cd,cd+n*n,CD)-lower_bound(cd,cd+n*n,CD);
}
}
cout<<res;
return 0;
}
【刷题记录】 && 【算法杂谈】折半枚举与upper_bound 和 lower_bound的更多相关文章
- $2019$ 暑期刷题记录1:(算法竞赛DP练习)
$ 2019 $ 暑期刷题记录: $ POJ~1952~~BUY~LOW, BUY~LOWER: $ (复杂度优化) 题目大意:统计可重序列中最长上升子序列的方案数. 题目很直接的说明了所求为 $ L ...
- PKUWC&SC 2018 刷题记录
PKUWC&SC 2018 刷题记录 minimax 线段树合并的题,似乎并不依赖于二叉树. 之前写的草率的题解在这里:PKUWC2018 minimax Slay the Spire 注意到 ...
- DP刷题记录(持续更新)
DP刷题记录 (本文例题目前大多数都选自算法竞赛进阶指南) TYVJ1071 求两个序列的最长公共上升子序列 设\(f_{i,j}\)表示a中的\(1-i\)与b中色\(1-j\)匹配时所能构成的以\ ...
- 刷题记录:[De1CTF 2019]Giftbox && Comment
目录 刷题记录:[De1CTF 2019]Giftbox && Comment 一.知识点 1.sql注入 && totp 2.RCE 3.源码泄露 4.敏感文件读取 ...
- DP刷题记录
目录 dp刷题记录 codeforces 706C codeforces 940E BZOJ3997 POJ2279 GYM102082B GYM102082D codeforces132C L3-0 ...
- 刷题记录:[GWCTF 2019]枯燥的抽奖
目录 刷题记录:[GWCTF 2019]枯燥的抽奖 知识点 php伪随机性 刷题记录:[GWCTF 2019]枯燥的抽奖 题目复现链接:https://buuoj.cn/challenges 参考链接 ...
- 2021.12.19 eleveni的刷题记录
2021.12.19 eleveni的刷题记录 0. 本次记录有意思的题 0.1 每个点恰好经过一次并且求最小时间 P2469 [SDOI2010]星际竞速 https://www.luogu.com ...
- 2021.12.16 eleveni的刷题记录
2021.12.16 eleveni的刷题记录 1. 数论 https://www.luogu.com.cn/problem/P2532 1.1卡特兰数 https://www.luogu.com.c ...
- PE刷题记录
PE刷题记录 PE60 / 20%dif 这道题比较坑爹. 所有可以相连的素数可以构成一张图,建出这张图,在其中找它的大小为5的团.注意上界的估算,大概在1W以内.1W内有1229个素数,处理出这些素 ...
随机推荐
- RabbitMQ 简介
1. MQ描述 MQ全程为Message Queue,消息队列(MQ)是一种应用程序对应用程序通信的方法.应用程序通过读写出入队列的消息来通信,而无需专用连接来链接它们.消息传递指的是程序之间通过在消 ...
- java环境变量以及jdk、jre、jvm
一.jdk,jre,jvm的了解:jdk全称java development kit即java开发工具包,是整个java的核心,包含了java运行环境jre.java工具包和java的基础类库: jr ...
- label和input里面文字不对齐的解决方法!
测试了集中方法,发现不行.只能用专署标签解决这个问题. <fieldset> <legend>神光咨询后台管理登录</legend> <br /& ...
- CSS3教程:box-sizing属性的理解
说到 IE 的 bug,一个臭名昭著的例子是它对于“盒模型”的错误解释:在 IE5.x 以及 Quirks 模式的 IE6/7 中,将 border 与 padding 都包含在 width 之内.这 ...
- linux 命令01
mkdir 创建目录 cd 进入目录 touch 创建文件 touch oldboy.txt vi 编辑器,相当于记事本,有编辑功能,较弱 vim 复杂编辑器,相当于,emeditor,editplu ...
- 用border-image实现波浪边框
border-image的介绍 http://www.w3school.com.cn/cssref/pr_border-image.asp 先看一个效果: http://www.w3school.co ...
- AtomicBoolean介绍与使用
java.util.concurrent.atomic.AtomicBoolean 继承自Object. 介绍: 在这个Boolean值的变化的时候不允许在之间插入,保持操作的原子性 方法和举例 ...
- DevExpress 创建EXCEL
添加库引用:DevExpress.Data.v13.1.dll. DevExpress.Docs.v13.1.dll.DevExpress.Office.v13.1.Core.dll. DevExpr ...
- Linux下编译安装MariaDB
MariaDB是MySQL的一个开源分支,主要是社区在维护,并且完全兼容MySQL,并且可以很方便的称为MySQL的替代,MariaDB的诞生正是出自MySQL创始人Michael Widenius之 ...
- MMAP和DIRECT IO区别
看完此文,题目不言自明.转自 http://blog.chinaunix.net/uid-27105712-id-3270102.html 在Linux 开发中,有几个关系到性能的东西,技术人员非常关 ...