洛谷P5264 【模板】多项式三角函数
题面
题解
据说有一个叫做欧拉公式的东西
\]
别问我为啥我今天第一次看到它
那么显然也有
\]
两个柿子相加得到
\]
\]
同理可得
\]
然后左转抄板……
等会儿这里这个\(i\)咋整?
因为\(i^2=-1\),那么在模\(998244353\)意义下有
\]
爆搜之后可以解得\(i\equiv 86583718\)
然后没有然后了
//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]=' ';
}
const int N=(1<<18)+5,P=998244353,img=86583718,inv2=499122177,iimg=954952494;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
return res;
}
int inv[N],r[21][N],rt[2][N<<1],lg[N],lim,d;
int iinv(R int x){return x<=262144?inv[x]:mul(P-P/x,iinv(P%x));}
void Pre(){
fp(d,1,18){
fp(i,1,(1<<d)-1)r[d][i]=(r[d][i>>1]>>1)|((i&1)<<(d-1));
lg[1<<d]=d;
}
inv[0]=inv[1]=1;
fp(i,2,262144)inv[i]=mul(P-P/i,inv[P%i]);
for(R int t=(P-1)>>1,i=1,x,y;i<=262144;i<<=1,t>>=1){
x=ksm(3,t),y=iinv(x),rt[0][i]=rt[1][i]=1;
fp(k,1,i-1)
rt[1][i+k]=mul(rt[1][i+k-1],x),
rt[0][i+k]=mul(rt[0][i+k-1],y);
}
}
void NTT(int *A,int ty){
fp(i,0,lim-1)if(i<r[d][i])swap(A[i],A[r[d][i]]);
for(R int mid=1;mid<lim;mid<<=1)
for(R int j=0,t;j<lim;j+=(mid<<1))
fp(k,0,mid-1)
A[j+k+mid]=dec(A[j+k],t=mul(rt[ty][mid+k],A[j+k+mid])),
A[j+k]=add(A[j+k],t);
if(!ty)fp(i,0,lim-1)A[i]=mul(A[i],inv[lim]);
}
void Inv(int *a,int *b,int len){
if(len==1)return b[0]=iinv(a[0]),void();
Inv(a,b,len>>1);
static int A[N],B[N];lim=(len<<1),d=lg[lim];
fp(i,0,len-1)A[i]=a[i],B[i]=b[i];
fp(i,len,lim-1)A[i]=B[i]=0;
NTT(A,1),NTT(B,1);
fp(i,0,lim-1)A[i]=mul(A[i],mul(B[i],B[i]));
NTT(A,0);
fp(i,0,len-1)b[i]=dec(add(b[i],b[i]),A[i]);
fp(i,len,lim-1)b[i]=0;
}
void Ln(int *a,int *b,int len){
static int A[N],B[N];
fp(i,1,len-1)A[i-1]=mul(a[i],i);A[len-1]=0;
Inv(a,B,len);lim=(len<<1),d=lg[lim];
fp(i,len,lim-1)A[i]=B[i]=0;
NTT(A,1),NTT(B,1);
fp(i,0,lim-1)A[i]=mul(A[i],B[i]);
NTT(A,0);
fp(i,1,len-1)b[i]=mul(A[i-1],inv[i]);b[0]=0;
fp(i,len,lim-1)b[i]=0;
}
void Exp(int *a,int *b,int len){
if(len==1)return b[0]=1,void();
Exp(a,b,len>>1);
static int A[N];Ln(b,A,len);
lim=(len<<1),d=lg[lim];
A[0]=dec(a[0]+1,A[0]);
fp(i,1,len-1)A[i]=dec(a[i],A[i]);
fp(i,len,lim-1)A[i]=b[i]=0;
NTT(A,1),NTT(b,1);
fp(i,0,lim-1)b[i]=mul(A[i],b[i]);
NTT(b,0);
fp(i,len,lim-1)b[i]=0;
}
int A[N],B[N],n,ty;
void cos(int *a,int *b,int len){
static int p[N],A[N],B[N];
fp(i,0,len-1)p[i]=mul(img,a[i]);
Exp(p,A,len);
Inv(A,B,len);
fp(i,0,len-1)b[i]=mul(add(A[i],B[i]),inv2);
}
void sin(int *a,int *b,int len){
static int p[N],A[N],B[N];
fp(i,0,len-1)p[i]=mul(img,a[i]);
Exp(p,A,len);
Inv(A,B,len);
fp(i,0,len-1)b[i]=mul(dec(A[i],B[i]),iimg);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),ty=read(),Pre();
fp(i,0,n-1)A[i]=read();
int len=1;while(len<=n)len<<=1;
if(ty)cos(A,B,len);else sin(A,B,len);
fp(i,0,n-1)print(B[i]);
return Ot(),0;
}
洛谷P5264 【模板】多项式三角函数的更多相关文章
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- 洛谷.4512.[模板]多项式除法(NTT)
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...
- 洛谷.4238.[模板]多项式求逆(NTT)
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...
- 洛谷 P4512 [模板] 多项式除法
题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...
- 洛谷 P4238 [模板] 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 多项式求逆元详解+模板 【洛谷P4238】多项式求逆
概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
随机推荐
- 编译gcc5.1.0时的报错
编译安装gcc5.1.0时出现如下报错: configure: error: error verifying int64_t uses long long 这是由于没有安装gcc_c++导致的,安装下 ...
- C#的ComboBox学习使用2018.08.03
ComboBox是一个有下拉列表的文本显示框,其text为当前的文本,item属性为项 comboBox1.Items.Add("); id = comboBox1.Text; 可以采用se ...
- HttpClient由Client客户端上传File文件流至Server服务端
客户端方法 public static void main(String[] args) { File file=new File("E:\\lucene\\rev\\全年平台受理量.doc ...
- Excel VBA入门(二)数组和字典
数组和字典也是VBA的常用到数据类型之一.但是我翻了有四五本VBA教程相关的书,里面都没有介绍到字典,数组到是在介绍数据类型时有介绍,而并没有提到字典. 事实上,字典不是VBA内置的类型,它是Wind ...
- [hdu1823]Luck and Love(二维线段树)
解题关键:二维线段树模板题(单点修改.查询max) #include<cstdio> #include<cstring> #include<algorithm> # ...
- 高性能Web服务器Nginx的配置与部署研究(8)核心模块之事件模块
一.事件模块的作用是什么? 用来设置Nginx处理链接请求. 二.相关指令 1. accept_mutex 含义:设置是否使用连接互斥锁进行顺序的accept()系统调用. 语法:accept_mut ...
- 浅谈利用PLSQL的多线程处理机制,加快处理大数据表的效率
我们在处理大数据表的时候经常会感觉的处理速度不够快,效率不够高,那么今天下面我就来简单实现下PLSQL的多线程编程处理数据: 我模拟一个简单的场景,把某一张表中的数据(当然这张表的数据非常大)同步到目 ...
- c# 类中使用ResolveUrl
类中使用ResolveUrl 1>获取当前page然后调用ResolveUrl System.Web.UI.Page page = HttpContext.Current.CurrentHand ...
- EntityFramework - Code First - 数据迁移
需求 在更新模型之后同步更新数据库里的表,并不丢失原有数据 使用默认值填充新增加的字段 EntityFramework迁移命令 Enable-Migrations 启用迁移 Add-Migration ...
- Redis清理
Redis登录: Redis目录: redis-cli.exe -h 127.0.0.1 -p 6739 login: auth “password” flushall