1. 什么是Task?

在前面的章节里描写叙述过几个角色,Driver(Client),Master,Worker(Executor),Driver会提交Application到Master进行Worker上的Executor上的调度,显然这些都不是Task.

Spark上的几个关系能够这样理解:

  • Application: Application是Driver在构建SparkContent的上下文的时候创建的,就像申报员,如今要构建一个能完毕任务的集群,须要申报的是这次须要多少个Executor(能够简单理解为虚拟的机器)。每一个Executor须要多少CPU,多少内存。

  • Job: 这是Driver在调用Action的时候生成的Job。让DAGScheduler线程进行最后的调度,代表着这时候RDD的状态分析完了。须要进行最后的Stage分析了,Job并非提交给Executor运行的,一个Application存在多个Job
  • Task: 一个Job能够分成多个Task, 相当于这些Task分到了一个Group里,这个Group的ID就是Job ID

2. Task的类型

Task的类型和Stage相关,关于Stage。以及Stage之间的相关依赖构成任务的不同提交,就不在这篇描写叙述了

ShuffleMapStage 转化成 ShuffleMapTask

ResultStage 转化成为 ResultTask

当Spark上的action算子,通过DAG进行提交任务的时候,会通过Stage来决定提交什么类型的任务,详细的实现都在DAGScheduler.scala 的submitMissingTasks方法中。

3. 同一个Stage的Task数量

Spark是一个分布式的运行任务的框架。那么同一个Stage的并行任务的拆分就很的重要。在任务的分解中并不仅仅是stage的步骤的分解,同一时候也是对同一个Stage中的要分析的数据分解,而对数据的分解直接决定对同一个Stage所提交的任务的数量。

对Stage的任务拆解决定着任务的之间的关系,而对同一个Stage的分析数据进行拆解控制着任务的数量。

比方基于拆解的分析数据的而运行的算子象map。这些任务都是独立的,并没有对数据进行最后的归并和整理,这些task是全然能够进行并行计算的,对同一个Stage的task的数量在Spark上是能够控制的。

在这里以ParallelCollectionRDD为简单的样例,先看DAGScheduler.submitMissingTasks的方法

 private def submitMissingTasks(stage: Stage, jobId: Int) {
logDebug("submitMissingTasks(" + stage + ")")
// Get our pending tasks and remember them in our pendingTasks entry
stage.pendingPartitions.clear() // First figure out the indexes of partition ids to compute.
val partitionsToCompute: Seq[Int] = stage.findMissingPartitions()
。 。。。 。。。 。 。 。。 val tasks: Seq[Task[_]] = try {
stage match {
case stage: ShuffleMapStage =>
partitionsToCompute.map { id =>
val locs = taskIdToLocations(id)
val part = stage.rdd.partitions(id)
new ShuffleMapTask(stage.id, stage.latestInfo.attemptId,
taskBinary, part, locs, stage.latestInfo.taskMetrics, properties, Option(jobId),
Option(sc.applicationId), sc.applicationAttemptId)
} case stage: ResultStage =>
partitionsToCompute.map { id =>
val p: Int = stage.partitions(id)
val part = stage.rdd.partitions(p)
val locs = taskIdToLocations(id)
new ResultTask(stage.id, stage.latestInfo.attemptId,
taskBinary, part, locs, id, properties, stage.latestInfo.taskMetrics,
Option(jobId), Option(sc.applicationId), sc.applicationAttemptId)
}
}
} catch {
case NonFatal(e) =>
abortStage(stage, s"Task creation failed: $e\n${Utils.exceptionString(e)}", Some(e))
runningStages -= stage
return
}

生产task的数量是由val partitionsToCompute: Seq[Int] = stage.findMissingPartitions()来决定的。在ShuffleMapStage里

override def findMissingPartitions(): Seq[Int] = {
val missing = (0 until numPartitions).filter(id => outputLocs(id).isEmpty)
assert(missing.size == numPartitions - _numAvailableOutputs,
s"${missing.size} missing, expected ${numPartitions - _numAvailableOutputs}")
missing
}

能够看到详细是由numPartitions来决定的。在来看numPartitions

val numPartitions = rdd.partitions.length

由rdd.partitions来决定的,对ShuffleMapStage来说rdd就是最后一个value类型的transformation 的RDD。比方常见的MapPartitionsRDD

在MapPartitionsRDD来说的partitions

  override def getPartitions: Array[Partition] = firstParent[T].partitions

是transformation的算子链中的第一个。我们以ParallelCollectionRDD为样例,比方常见的相应的样例:

sparkcontext.parallelize(exampleApacheLogs)

在ParallelCollectionRDD中

override def getPartitions: Array[Partition] = {
val slices = ParallelCollectionRDD.slice(data, numSlices).toArray
slices.indices.map(i => new ParallelCollectionPartition(id, i, slices(i))).toArray
}

在ParallelCollectionRDD中数据的Partitions是由numSlices来决定的

  def parallelize[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] = withScope {
assertNotStopped()
new ParallelCollectionRDD[T](this, seq, numSlices, Map[Int, Seq[String]]())
}

numSlices 是能够在parallelize函数中传入,而默认使用defaultParallelism的參数控制

def defaultParallelism: Int = {
assertNotStopped()
taskScheduler.defaultParallelism
}
override def defaultParallelism(): Int = backend.defaultParallelism()

在CoarseGrainedSchedulerBackend.scala 的类中:

  override def defaultParallelism(): Int = {
conf.getInt("spark.default.parallelism", math.max(totalCoreCount.get(), 2))
}

默认的值是受下面控制:

  1. 配置文件spark.default.parallelism
  2. totalCoreCount 的值: CoarseGrainedSchedulerBackend是一个executor管理的backend,里面维护着executor的信息。totalCoreCount就是executor汇报上来的核数,注意由于executor汇报自己是在application分配好后发生的,汇报的信息和获取totalCoreCount的线程是异步的。也就是假设executor没有汇报上来。totalCoreCount.get()的值并不准确(根绝Master对executor的分配策略。是无法保证分配多少个executor, 在这里spark更依赖executor主动的向driver汇报),这里的策略是无法保证准确的获取executor的核数。

  3. 假设没有设置spark.default.parallelism,最小值是2

依赖于rdd.partitions的策略,最后决定task的分配数量。

4. Task的提交和调度分配

在本篇中主要描写叙述集群下的任务调度

4.1 Task的提交

在DAGScheduler将一个Stage中所分配的Task形成一个TaskSet进行提交,在TaskSet里所保存的是Task的集合。还有Stage的Id。以及JobId,注意在这里JobId是作为一个优先级的參数,作为后序队列调度的參数。

在TaskSchedulerImpl.scala中

  override def submitTasks(taskSet: TaskSet) {
val tasks = taskSet.tasks
logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
this.synchronized {
val manager = createTaskSetManager(taskSet, maxTaskFailures)
val stage = taskSet.stageId
val stageTaskSets =
taskSetsByStageIdAndAttempt.getOrElseUpdate(stage, new HashMap[Int, TaskSetManager])
stageTaskSets(taskSet.stageAttemptId) = manager
val conflictingTaskSet = stageTaskSets.exists { case (_, ts) =>
ts.taskSet != taskSet && !ts.isZombie
}
if (conflictingTaskSet) {
throw new IllegalStateException(s"more than one active taskSet for stage $stage:" +
s" ${stageTaskSets.toSeq.map{_._2.taskSet.id}.mkString(",")}")
}
schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties) if (!isLocal && !hasReceivedTask) {
starvationTimer.scheduleAtFixedRate(new TimerTask() {
override def run() {
if (!hasLaunchedTask) {
logWarning("Initial job has not accepted any resources; " +
"check your cluster UI to ensure that workers are registered " +
"and have sufficient resources")
} else {
this.cancel()
}
}
}, STARVATION_TIMEOUT_MS, STARVATION_TIMEOUT_MS)
}
hasReceivedTask = true
}
backend.reviveOffers()
}

将TaskSet 封装成TaskSetManager,通过schedulableBuilder去加入TaskSetManager到队列中,在Spark中,有两种形态

  1. FIFOSchedulableBuilder: 单一pool
  2. FairSchedulableBuilder:   多个pool

4.1.1 FairSchedulableBuilder pool池

通过fairsscheduler.xml的模版来设置參数来控制pool的调度

<allocations>
<pool name="production1">
<schedulingMode>FAIR</schedulingMode>
<weight>3</weight>
<minShare>4</minShare>
</pool>
<pool name="production2">
<schedulingMode>FAIR</schedulingMode>
<weight>5</weight>
<minShare>2</minShare>
</pool>
</allocations>

參数的定义:

  • name:   调度池的名称,可依据该參数使用指定pool,EX: sc.setLocalProperty("spark.scheduler.pool", "production1")
  • weight:  调度池的权重。调度池依据该參数分配资源。
  • minShare: 调度池须要的最小资源数(CPU核数),公平调度器首先会尝试为每一个调度池分配最少minShare资源,然后剩余资源才会依照weight大小继续分配
  • schedulingMode: 调度池内的调度模式

在TaskSchedulerImpl在submitTasks加入TaskSetManager到pool后,调用了backend.reviveOffers();

  override def reviveOffers() {
driverEndpoint.send(ReviveOffers)
}


是向driver的endpoint发送了reviveoffers的消息,Spark中的很多操作都是通过消息来传递的,哪怕DAGScheduler的线程和endpoint的线程都是同一个Driver进程

4.2 Task的分配

Netty 的dispatcher线程接受到revievoffers的消息后,CoarseGrainedSchedulerBackend

      case ReviveOffers =>
makeOffers()

调用了makeoffers函数

private def makeOffers() {
// Filter out executors under killing
val activeExecutors = executorDataMap.filterKeys(executorIsAlive)
val workOffers = activeExecutors.map { case (id, executorData) =>
new WorkerOffer(id, executorData.executorHost, executorData.freeCores)
}.toIndexedSeq
launchTasks(scheduler.resourceOffers(workOffers))
}

makeOffers里进行了资源的调度,netty中接收全部的信息,同一时候也在CoarseGrainedSchedulerBackend中维护着executor的状态map:executorDataMap,executor的状态是executor主动汇报的。

通过scheduler.resourceOffers来进行task的资源分配到executor中

 def resourceOffers(offers: IndexedSeq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
// Mark each slave as alive and remember its hostname
// Also track if new executor is added
var newExecAvail = false
for (o <- offers) {
if (!hostToExecutors.contains(o.host)) {
hostToExecutors(o.host) = new HashSet[String]()
}
if (!executorIdToRunningTaskIds.contains(o.executorId)) {
hostToExecutors(o.host) += o.executorId
executorAdded(o.executorId, o.host)
executorIdToHost(o.executorId) = o.host
executorIdToRunningTaskIds(o.executorId) = HashSet[Long]()
newExecAvail = true
}
for (rack <- getRackForHost(o.host)) {
hostsByRack.getOrElseUpdate(rack, new HashSet[String]()) += o.host
}
} // Randomly shuffle offers to avoid always placing tasks on the same set of workers.
val shuffledOffers = Random.shuffle(offers)
// Build a list of tasks to assign to each worker.
val tasks = shuffledOffers.map(o => new ArrayBuffer[TaskDescription](o.cores))
val availableCpus = shuffledOffers.map(o => o.cores).toArray
val sortedTaskSets = rootPool.getSortedTaskSetQueue
for (taskSet <- sortedTaskSets) {
logDebug("parentName: %s, name: %s, runningTasks: %s".format(
taskSet.parent.name, taskSet.name, taskSet.runningTasks))
if (newExecAvail) {
taskSet.executorAdded()
}
} // Take each TaskSet in our scheduling order, and then offer it each node in increasing order
// of locality levels so that it gets a chance to launch local tasks on all of them.
// NOTE: the preferredLocality order: PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
for (taskSet <- sortedTaskSets) {
var launchedAnyTask = false
var launchedTaskAtCurrentMaxLocality = false
for (currentMaxLocality <- taskSet.myLocalityLevels) {
do {
launchedTaskAtCurrentMaxLocality = resourceOfferSingleTaskSet(
taskSet, currentMaxLocality, shuffledOffers, availableCpus, tasks)
launchedAnyTask |= launchedTaskAtCurrentMaxLocality
} while (launchedTaskAtCurrentMaxLocality)
}
if (!launchedAnyTask) {
taskSet.abortIfCompletelyBlacklisted(hostToExecutors)
}
} if (tasks.size > 0) {
hasLaunchedTask = true
}
return tasks
}

  1. 随机化了有效的executor的列表。为了均匀的分配
  2. 获取池里(前面已经提过油两种池)的排号序的taskSetManager的队列
  3. 对taskSetManager里面的task集合进行调度分配

4.2.1 taskSetManager队列的排序

这里的排序是对单个Pool里的taskSetManager进行排序。Spark有两种排序算法

  var taskSetSchedulingAlgorithm: SchedulingAlgorithm = {
schedulingMode match {
case SchedulingMode.FAIR =>
new FairSchedulingAlgorithm()
case SchedulingMode.FIFO =>
new FIFOSchedulingAlgorithm()
case _ =>
val msg = "Unsupported scheduling mode: $schedulingMode. Use FAIR or FIFO instead."
throw new IllegalArgumentException(msg)
}
}

在这里就简介FIFOSchedulingAlgorithm的算法

private[spark] class FIFOSchedulingAlgorithm extends SchedulingAlgorithm {
override def comparator(s1: Schedulable, s2: Schedulable): Boolean = {
val priority1 = s1.priority
val priority2 = s2.priority
var res = math.signum(priority1 - priority2)
if (res == 0) {
val stageId1 = s1.stageId
val stageId2 = s2.stageId
res = math.signum(stageId1 - stageId2)
}
res < 0
}
}

这里的priority 就是前面说到的JobID, 也就是JobID越小的排序在前面,在相通JobId下的StageId越小的排序在前面

4.2.2 单个TaskSetManager的task调度

TaskSetManager 里保存了TaskSet,也就是DAGScheduler里生成的tasks的集合,在TaskSchedulerImpl.scala中进行了单个的TaskSetManager进行调度
private def resourceOfferSingleTaskSet(
taskSet: TaskSetManager,
maxLocality: TaskLocality,
shuffledOffers: Seq[WorkerOffer],
availableCpus: Array[Int],
tasks: IndexedSeq[ArrayBuffer[TaskDescription]]) : Boolean = {
var launchedTask = false
for (i <- 0 until shuffledOffers.size) {
val execId = shuffledOffers(i).executorId
val host = shuffledOffers(i).host
if (availableCpus(i) >= CPUS_PER_TASK) {
try {
for (task <- taskSet.resourceOffer(execId, host, maxLocality)) {
tasks(i) += task
val tid = task.taskId
taskIdToTaskSetManager(tid) = taskSet
taskIdToExecutorId(tid) = execId
executorIdToRunningTaskIds(execId).add(tid)
availableCpus(i) -= CPUS_PER_TASK
assert(availableCpus(i) >= 0)
launchedTask = true
}
} catch {
case e: TaskNotSerializableException =>
logError(s"Resource offer failed, task set ${taskSet.name} was not serializable")
// Do not offer resources for this task, but don't throw an error to allow other
// task sets to be submitted.
return launchedTask
}
}
}
return launchedTask
}

在这里,我们看到了一个參数CPUS_PER_TASK

  val CPUS_PER_TASK = conf.getInt("spark.task.cpus", 1)

在spark里,我们能够设置task所使用的cpu的数量,默认是1个,一个task任务在executor中是启动一个线程来运行的

通过计算每一个executor的剩余资源,决定是否须要从tasksetmanager里分配出task.

  def resourceOffer(
execId: String,
host: String,
maxLocality: TaskLocality.TaskLocality)
: Option[TaskDescription] =
{
..... dequeueTask(execId, host, allowedLocality).map { case ((index, taskLocality, speculative)) =>
......
new TaskDescription(taskId = taskId, attemptNumber = attemptNum, execId,
taskName, index, serializedTask)
}
} else {
None
}
}

核心函数dequeueTask

  private def dequeueTask(execId: String, host: String, maxLocality: TaskLocality.Value)
: Option[(Int, TaskLocality.Value, Boolean)] =
{
for (index <- dequeueTaskFromList(execId, host, getPendingTasksForExecutor(execId))) {
return Some((index, TaskLocality.PROCESS_LOCAL, false))
} if (TaskLocality.isAllowed(maxLocality, TaskLocality.NODE_LOCAL)) {
for (index <- dequeueTaskFromList(execId, host, getPendingTasksForHost(host))) {
return Some((index, TaskLocality.NODE_LOCAL, false))
}
} if (TaskLocality.isAllowed(maxLocality, TaskLocality.NO_PREF)) {
// Look for noPref tasks after NODE_LOCAL for minimize cross-rack traffic
for (index <- dequeueTaskFromList(execId, host, pendingTasksWithNoPrefs)) {
return Some((index, TaskLocality.PROCESS_LOCAL, false))
}
} if (TaskLocality.isAllowed(maxLocality, TaskLocality.RACK_LOCAL)) {
for {
rack <- sched.getRackForHost(host)
index <- dequeueTaskFromList(execId, host, getPendingTasksForRack(rack))
} {
return Some((index, TaskLocality.RACK_LOCAL, false))
}
} if (TaskLocality.isAllowed(maxLocality, TaskLocality.ANY)) {
for (index <- dequeueTaskFromList(execId, host, allPendingTasks)) {
return Some((index, TaskLocality.ANY, false))
}
} // find a speculative task if all others tasks have been scheduled
dequeueSpeculativeTask(execId, host, maxLocality).map {
case (taskIndex, allowedLocality) => (taskIndex, allowedLocality, true)}
}

在Spark中为了尽量分配任务到task所需的资源的本地,依据task里的preferredLocations所保存的须要资源的位置进行分配

  1. 尽量分配到task到task所需资源同样的executor里运行,比方ExecutorCacheTaskLocation,HDFSCacheTaskLocation
  2. 尽量分配到task里task所需资源相通的host里运行
  3. task的数组从最后向前開始分配

分配完生成TaskDescription。里面记录着taskId, execId, task在数组的位置,和task的整个序列化的内容

4.2.3 Launch Tasks

private def launchTasks(tasks: Seq[Seq[TaskDescription]]) {
for (task <- tasks.flatten) {
val serializedTask = ser.serialize(task)
if (serializedTask.limit >= maxRpcMessageSize) {
scheduler.taskIdToTaskSetManager.get(task.taskId).foreach { taskSetMgr =>
try {
var msg = "Serialized task %s:%d was %d bytes, which exceeds max allowed: " +
"spark.rpc.message.maxSize (%d bytes). Consider increasing " +
"spark.rpc.message.maxSize or using broadcast variables for large values."
msg = msg.format(task.taskId, task.index, serializedTask.limit, maxRpcMessageSize)
taskSetMgr.abort(msg)
} catch {
case e: Exception => logError("Exception in error callback", e)
}
}
}
else {
val executorData = executorDataMap(task.executorId)
executorData.freeCores -= scheduler.CPUS_PER_TASK logDebug(s"Launching task ${task.taskId} on executor id: ${task.executorId} hostname: " +
s"${executorData.executorHost}.") executorData.executorEndpoint.send(LaunchTask(new SerializableBuffer(serializedTask)))
}
}
}

这里的逻辑就相对照较简单,TaskDescription里面包括着executorId。而CoarseGrainedSchedulerBackend里有executor的信息。依据executorId获取到executor的通讯端口,发送LunchTask的信息。

这里有个RPC的消息的大小控制。假设序列化的task的内容超过了最大RPC的消息。这个任务会被丢弃
/** Returns the configured max message size for messages in bytes. */
def maxMessageSizeBytes(conf: SparkConf): Int = {
val maxSizeInMB = conf.getInt("spark.rpc.message.maxSize", 128)
if (maxSizeInMB > MAX_MESSAGE_SIZE_IN_MB) {
throw new IllegalArgumentException(
s"spark.rpc.message.maxSize should not be greater than $MAX_MESSAGE_SIZE_IN_MB MB")
}
maxSizeInMB * 1024 * 1024
}

能够看到最大的消息大小是128M,能够通过spark.rpc.message.maxSize进行配置

大数据:Spark Core(二)Driver上的Task的生成、分配、调度的更多相关文章

  1. Spark Core(二)Driver上的Task的生成、分配、调度(转载)

    1. 什么是Task? 在前面的章节里描述过几个角色,Driver(Client),Master,Worker(Executor),Driver会提交Application到Master进行Worke ...

  2. 王家林 大数据Spark超经典视频链接全集[转]

    压缩过的大数据Spark蘑菇云行动前置课程视频百度云分享链接 链接:http://pan.baidu.com/s/1cFqjQu SCALA专辑 Scala深入浅出经典视频 链接:http://pan ...

  3. 大数据Spark超经典视频链接全集

    论坛贴吧等信息发布参考模板 Scala.Spark史上最全面.最详细.最彻底的一整套视频全集(特别是机器学习.Spark Core解密.Spark性能优化.Spark面试宝典.Spark项目案例等). ...

  4. 【Todo】【读书笔记】大数据Spark企业级实战版 & Scala学习

    下了这本<大数据Spark企业级实战版>, 另外还有一本<Spark大数据处理:技术.应用与性能优化(全)> 先看前一篇. 根据书里的前言里面,对于阅读顺序的建议.先看最后的S ...

  5. 《大数据Spark企业级实战 》

    基本信息 作者: Spark亚太研究院   王家林 丛书名:决胜大数据时代Spark全系列书籍 出版社:电子工业出版社 ISBN:9787121247446 上架时间:2015-1-6 出版日期:20 ...

  6. 大数据 Spark 架构

    一.Spark的产生背景起源 1.spark特点 1.1轻量级快速处理 Saprk允许传统的hadoop集群中的应用程序在内存中已100倍的速度运行即使在磁盘上也比传统的hadoop快10倍,Spar ...

  7. Spark GraphX宝刀出鞘,图文并茂研习图计算秘笈与熟练的掌握Scala语言【大数据Spark实战高手之路】

    Spark GraphX宝刀出鞘,图文并茂研习图计算秘笈 大数据的概念与应用,正随着智能手机.平板电脑的快速流行而日渐普及,大数据中图的并行化处理一直是一个非常热门的话题.图计算正在被广泛地应用于社交 ...

  8. 大数据笔记(二十七)——Spark Core简介及安装配置

    1.Spark Core: 类似MapReduce 核心:RDD 2.Spark SQL: 类似Hive,支持SQL 3.Spark Streaming:类似Storm =============== ...

  9. 大数据笔记(二十八)——执行Spark任务、开发Spark WordCount程序

    一.执行Spark任务: 客户端 1.Spark Submit工具:提交Spark的任务(jar文件) (*)spark提供的用于提交Spark任务工具 (*)example:/root/traini ...

随机推荐

  1. python(35):多线程读取文件

    多线程读取文件: # _*_coding:utf-8_*_ import time, threading, ConfigParser ''' Reader类,继承threading.Thread @_ ...

  2. 【C/C++】exit不兼容解决方案

      1.问题      今天在编译一个基于原始套接字实现网络数据包嗅探程序时出现了如下错误:    警告: 隐式声明与内建函数 ‘exit’ 不兼容 2.解决方案   后面发现没有把stdlib.h包 ...

  3. Windows下使用MINGW编译ffplay

    之前考虑到需要快速配置编译ffplay,使用了比较暴力的方法,具体可以参考编译ffplay.exe简化版. 这里介绍下相对规范的做法. 前提:已经安装了Windows下GCC开发环境--MINGW+m ...

  4. 使用MSYS、Notepad++搭建C/C++开发环境

    目标说明 本文的目标是教会大家如何用Notepad++来编写C/C++代码,并能够编译运行. 注:Notepad++是一个非常优秀的开源文本编辑器.官网地址 http://notepad-plus-p ...

  5. jetty debug 启动 jettyconfig配置文件

    jetty 代码启动 debug很简单  run----->>>debug as  代码启动配置文件 start 方法 @Test public void serverStrart( ...

  6. ftp 自动上传数据库备份文件

    将备份好的数据库文件传到另一个电脑上,自动上传数据库备份文件 #!/bin/bash # ####################################################### ...

  7. django 返回json数据

    from django.core import serializers @login_required def ajax_get_data(request): json_data = serializ ...

  8. 使用DbUtils对JDBC封装实现面向实体查询

    直接上代码 package org.smart4j.chapter2.helper; import org.apache.commons.dbcp2.BasicDataSource; import o ...

  9. JavaScript JSON 数据处理

    在JavaScript 也自带了 JSON 格式的处理 <!doctype html> <html> <script> var test_json_str = { ...

  10. H2O中的随机森林算法介绍及其项目实战(python实现)

    H2O中的随机森林算法介绍及其项目实战(python实现) 包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator ...