TCP数据传输过程详解
在学习三次握手的时候,我们知道其中有seq、ack两个序列号。
如果不仔细了解,那么可能只知道发回去的时候要加一。
下文将着重介绍,关于序列号的传输过程。
最关键的一句话:序列号为当前端成功发送的数据位数,确认号为当前端成功接收到的数据位数,SYN标志位和FIN标志位也要占1位
转自:http://blog.csdn.net/a19881029/article/details/38091243
原文见:http://packetlife.net/blog/2010/jun/7/understanding-tcp-sequence-acknowledgment-numbers/
如果你正在读这篇文章,很可能你对TCP“非著名”的“三次握手”或者说“SYN,SYN/ACK,ACK”已经很熟悉了。不幸的是,对很多人来说,对TCP的学习就仅限于此了。尽管年代久远,TCP仍是一个相当复杂并且值得研究的协议。这篇文章的目的是让你能够更加熟练的检查Wireshark中的TCP序列号和确认号
在我们开始之前,确保在Wireshark中打开示例(请到作者原文中下载)并亲自实践一下
示例中仅包含一个单独的HTTP请求,请求的流程是:web浏览器向web服务器请求一个单独的图片文件,服务器返回一个成功的响应(HTTP/1.1200 OK),响应中包含请求的文件。右键示例文件中任意一个TCP包并且选择Follow TCP Stream就可在单独的窗口查看原始的TCP流
客户端请求使用红色显示,服务端响应使用蓝色显示
TCP三次握手(参见:http://blog.csdn.net/a19881029/article/details/30241561)
TCP在其协议头中使用大量的标志位或者说1位(bit)布尔域来控制连接状态,我们最感兴趣的3个标志位如下:
SYN - 创建一个连接
FIN - 终结一个连接
ACK - 确认接收到的数据
就像我们看见的那样,一个包中有可以设置多个标志位
选择Wireshark中的“包”1并且展开中间面板的TCP层解析,然后展开TCP头中的标志位域,这里我们可以看见所有解析出来的TCP标志位,需要注意的是,“包1”设置了SYN标志位
使用同样的方式操作“包2”。可以看到"包2"设置了2个标志位:ACK - 用来确认收到客户端的SYN包,SYN - 用来表明服务端也希望建立TCP连接
从客户端发来的“包3”只设置了ACK标志位。这3个包完成了最初的TCP3次握手
序列号和确认号:
TCP会话的每一端都包含一个32位(bit)的序列号,该序列号被用来跟踪该端发送的数据量。每一个包中都包含序列号,在接收端则通过确认号用来通知发送端数据成功接收
当某个主机开启一个TCP会话时,他的初始序列号是随机的,可能是0和4,294,967,295之间的任意值,然而,像Wireshark这种工具,通常显示的都是相对序列号/确认号,而不是实际序列号/确认号,相对序列号/确认号是和TCP会话的初始序列号相关联的。这是很方便的,因为比起真实序列号/确认号,跟踪更小的相对序列号/确认号会相对容易一些
比如,在“包1”中,最初的相对序列号的值是0,但是最下方面板中的ASCII码显示真实序列号的值是0xf61c6cbe,转化为10进制为4129057982
如果想要关闭相对序列号/确认号,可以选择Wireshark菜单栏中的 Edit -> Preferences ->protocols ->TCP,去掉Relative sequence number后面勾选框中的√即可
需要注意的是,文章接下来的部分依然使用相对序列号/确认号
为了更好的理解在整个TCP会话期间,TCP序列号和确认号是如何工作的,我们可以使用Wireshark内置的绘制流功能,选择菜单栏中的 Statistics ->Flow Graph...->TCP flow ->OK
Wireshark会自动创建一个TCP流的图形摘要
每行代表一个单独的TCP包,左边列显示时间,中间列显示包的方向、TCP端口、段长度和设置的标志位,右边列以10进制的方式显示相关序列号/确认号,在这里选中任意行会高亮主窗口中该行所关联的包
我们可以利用这个流图更好的理解序列号和确认号是如何工作的
包1:
TCP会话的每一端的序列号都从0开始,同样的,确认号也从0开始,因为此时通话还未开始,没有通话的另一端需要确认(我使用的Wireshark版本和原作者不同,Wireshark1.10.2中,包1不显示确认号)
包2:
服务端响应客户端的请求,响应中附带序列号0(由于这是服务端在该次TCP会话中发送的第一个包,所以序列号为0)和相对确认号1(表明服务端收到了客户端发送的包1中的SYN)
需要注意的是,尽管客户端没有发送任何有效数据,确认号还是被加1,这是因为接收的包中包含SYN或FIN标志位(并不会对有效数据的计数产生影响,因为含有SYN或FIN标志位的包并不携带有效数据)
包3:
和包2中一样,客户端使用确认号1响应服务端的序列号0,同时响应中也包含了客户端自己的序列号(由于服务端发送的包中确认收到了客户端发送的SYN,故客户端的序列号由0变为1)
此时,通信的两端的序列号都为1,通信两端的序列号增1发生在所有TCP会话的建立过程中
包4:
这是流中第一个携带有效数据的包(确切的说,是客户端发送的HTTP请求),序列号依然为1,因为到上个包为止,还没有发送任何数据,确认号也保持1不变,因为客户端没有从服务端接收到任何数据
需要注意的是,包中有效数据的长度为725字节
包5:
当上层处理HTTP请求时,服务端发送该包来确认客户端在包4中发来的数据,需要注意的是,确认号的值增加了725(725是包4中有效数据长度),变为726,简单来说,服务端以此来告知客户端端,目前为止,我总共收到了726字节的数据,服务端的序列号保持为1不变
包6:
这个包标志着服务端返回HTTP响应的开始,序列号依然为1,因为服务端在该包之前返回的包中都不带有有效数据,该包带有1448字节的有效数据
包7:
由于上个数据包的发送,TCP客户端的序列号增长至726,从服务端接收了1448字节的数据,客户端的确认号由1增长至1449
在抓包文件的主体部分,我们可以看到上述过程的不断的重复,客户端的序列号一直是726,因为客户端除了最初的725字节数据没有再向服务端发送数据,服务端的序列号则与此相反,由于服务端不断的发送HTTP响应,故其序列号一直在增长
序列号为当前端成功发送的数据位数,确认号为当前端成功接收的数据位数,SYN标志位和FIN标志位也要占1位
关闭连接
包38:
在确认了服务端发送过来的最后一个数据段之后,客户端将处理整个HTTP响应并决定不需要进一步通信了。此时客户端发送设置了FIN标志位的包38,其确认号和之前的包37一样
包39:
服务端通过将确认号加1的方式回应客户端期望关闭连接的请求(这里和包2中确认SYN标志位时所作的操作是一样的),同时设置当前包的FIN标志位
包40:
客户端发送最终序列号727,通过将确认号加1的方式确认服务端的FIN包
此时,通信双方都终结了会话并且可以释放用于维持会话所占用的资源
TCP数据传输过程详解的更多相关文章
- TCP/IP协议的数据传输过程详解——IP与以太网的包收发操作
MTU:一个网络包的最大长度,以太网中一般是1500字节:(含有头部长度,包括IP头部,TCP头部,不包括MAC头部) MSS:除去头部后,一个网络包所能容纳的TCP的数据的最大长度 下图为TCP/I ...
- 理论经典:TCP协议的3次握手与4次挥手过程详解
1.前言 尽管TCP和UDP都使用相同的网络层(IP),TCP却向应用层提供与UDP完全不同的服务.TCP提供一种面向连接的.可靠的字节流服务. 面向连接意味着两个使用TCP的应用(通常是一个客户和一 ...
- TCP协议的3次握手与4次挥手过程详解
1.前言 尽管TCP和UDP都使用相同的网络层(IP),TCP却向应用层提供与UDP完全不同的服务.TCP提供一种面向连接的.可靠的字节流服务. 面向连接意味着两个使用TCP的应用(通常是一个客户和一 ...
- 【转载】TCP /IP协议详解
首先,TCP/IP不是一个协议,而是一个协议族的统称. 里面包括了IP协议,IMCP协议,TCP协议,以及http.ftp.pop3协议等等. TCP/IP协议分层 提到协议分层,我们很容易联想到IS ...
- TCP、UDP详解与抓包工具使用
参考:https://www.cnblogs.com/HPAHPA/p/7737641.html TCP.UDP详解 1.传输层存在的必要性 由于网络层的分组传输是不可靠的,无法了解数据到达终点的时间 ...
- [转]TCP滑动窗口详解
TCP滑动窗口详解 http://lyjdamzwf.blog.163.com/blog/static/75206837201193373226/ TCP滑动窗口(Sliding Window) ...
- TCP /IP协议详解【转】
转自:https://www.jianshu.com/p/0cf648510bce?utm_campaign=maleskine&utm_content=note&utm_medium ...
- ping命令执行过程详解
[TOC] ping命令执行过程详解 机器A ping 机器B 同一网段 ping通知系统建立一个固定格式的ICMP请求数据包 ICMP协议打包这个数据包和机器B的IP地址转交给IP协议层(一组后台运 ...
- MySQL关闭过程详解和安全关闭MySQL的方法
MySQL关闭过程详解和安全关闭MySQL的方法 www.hongkevip.com 时间: -- : 阅读: 整理: 红客VIP 分享到: 红客VIP(http://www.hongkevip.co ...
随机推荐
- Win7下Netsh虚拟Wi-Fi
Netsh的字面意思是网络外壳,其实它是一个命令行实用程序,最初出现于Windows 2000操作系统,它可以帮助管理WINDOWS中的网络设置.此后,微软不断对它进行改进,给它增加了一些新的命令集. ...
- 3D HTML5 Logo标志 超炫酷旋转特效
今天又要为大家带来一款超酷的HTML5 Canvas 3D动画特效,是一款可以旋转的HTML5 Logo标志.画面上一共有两块可旋转的区域,第一是可旋转的背景,第二则是可旋转的Logo标志.Logo标 ...
- MAC算法
MAC算法 (Message Authentication Codes) 带秘密密钥的Hash函数:消息的散列值由只有通信双方知道的秘密密钥K来控制.此时Hash值称作MAC. 原理:在md与sha系 ...
- glsl Dream
<-vertex-> #version varying vec2 uv; void main(void) { uv = gl_MultiTexCoord0.st; gl_Position ...
- 纯js实现最简单的文件上传(后台使用MultipartFile)
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 使用w查看系统负载 vmstat命令 top命令 sar命令 nload命令
w/uptime 查看系统负载 w查看系统负载,uptime跟w一样. [root@centos7 ~]# w 22:34:10 up 6 days, 23:10, 4 users, load a ...
- 微信小程序省市区选择器对接数据库
前言,小程序本身是带有地区选着器的(网站:https://mp.weixin.qq.com/debug/wxadoc/dev/component/picker.html),由于自己开发的程序的数据是很 ...
- node配置自动监测文件改变不重启
方法一: nodemon npm install -g nodemon nodemon ./bin/www 或者在npm start命令里把node改为nodemon 方法二:supervisor n ...
- MongoDB 之 幽灵操作避免
进行静态加载数据到集合的过程中可能会出现. 假设建立一个任务(Job):在MongoDB中进行千条更新操作,开始后迅速终止任务,终止所有更新操作,但依然发现新的更新任务在不断出现,即使任务已经停止. ...
- ecshop学习1
ECSHOP开发中心(www.68ecshop.com) 研究一下ecshop,先安装一下.下面是整个安装步骤: 1.下载ecshop程序包,下载地址: http://download.ecshop. ...