Producer部分

Producer在实例化后, 对外提供send方法, 用于将数据送到指定的topic和partition; 以及在退出时需要的destroy方法.

接口 KafkaProducer.java

import java.util.List;
import java.util.Properties; public interface KafkaProducer<D> { default void init() {
}
default void destroy() {
}
boolean send(String topic, D data);
boolean send(String topic, Integer partition, D data);
boolean send(String topic, List<D> dataList);
boolean send(String topic, Integer partition, List<D> dataList); /**
* 默认配置
*/
default Properties getDefaultProps() {
Properties props = new Properties();
props.put("acks", "1");
props.put("retries", 1);
props.put("batch.size", 16384);
props.put("linger.ms", 1);
props.put("buffer.memory", 32 * 1024 * 1024L);
return props;
}
}

参数说明

Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
// The acks config controls the criteria under which requests are considered complete. The "all" setting we have specified will result in blocking on the full commit of the record, the slowest but most durable setting.
props.put("acks", "all");
// If the request fails, the producer can automatically retry, though since we have specified retries as 0 it won't. Enabling retries also opens up the possibility of duplicates (see the documentation on message delivery semantics for details).
props.put("retries", 0);
// The producer maintains buffers of unsent records for each partition. These buffers are of a size specified by the batch.size config. Making this larger can result in more batching, but requires more memory (since we will generally have one of these buffers for each active partition).
props.put("batch.size", 16384);
// By default a buffer is available to send immediately even if there is additional unused space in the buffer. However if you want to reduce the number of requests you can set linger.ms to something greater than 0. This will instruct the producer to wait up to that number of milliseconds before sending a request in hope that more records will arrive to fill up the same batch.
props.put("linger.ms", 1);
// 生产者缓冲大小,当缓冲区耗尽后,额外的发送调用将被阻塞。时间超过max.block.ms将抛出TimeoutException
props.put("buffer.memory", 33554432);
// The key.serializer and value.serializer instruct how to turn the key and value objects the user provides with their ProducerRecord into bytes. You can use the included ByteArraySerializer or StringSerializer for simple string or byte types.
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

实现 KafkaProducerImpl.java

import com.google.common.base.Strings;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import java.util.List;
import java.util.Map;
import java.util.Properties; public class KafkaProducerImpl<D> implements KafkaProducer<D> {
private static final Logger logger = LoggerFactory.getLogger(KafkaProducerImpl.class);
private final Producer<D, D> producer; public KafkaProducerImpl() {
Properties props = this.getDefaultProps();
props.put("bootstrap.servers", servers);
props.put("key.serializer", serializer);
props.put("value.serializer", serializer);
producer = new org.apache.kafka.clients.producer.KafkaProducer<>(props);
} @Override
public void destroy() {
if (producer != null) {
producer.close();
}
} @Override
public boolean send(String topic, D data) {
boolean isSuc = true;
try {
producer.send(new ProducerRecord<>(topic, data));
} catch (Exception e) {
isSuc = false;
logger.error(String.format("KafkaStringProducer send error.topic:[%s],data:[%s]", topic, data), e);
}
return isSuc;
} @Override
public boolean send(String topic, Integer partition, D data) {
boolean isSuc = true;
try {
producer.send(new ProducerRecord<>(topic, partition, null, data));
} catch (Exception e) {
isSuc = false;
logger.error(String.format("KafkaStringProducer send error.topic:[%s],data:[%s]", topic, data), e);
}
return isSuc;
} @Override
public boolean send(String topic, List<D> dataList) {
boolean isSuc = true;
try {
if (dataList != null) {
dataList.forEach(item -> producer.send(new ProducerRecord<>(topic, item)));
}
} catch (Exception e) {
isSuc = false;
logger.error(String.format("KafkaStringProducer send error.topic:[%s],dataList:[%s]", topic, dataList), e);
}
return isSuc;
} @Override
public boolean send(String topic, Integer partition, List<D> dataList) {
boolean isSuc = true;
try {
if (dataList != null) {
dataList.forEach(item -> producer.send(new ProducerRecord<>(topic, partition, null, item)));
}
} catch (Exception e) {
isSuc = false;
logger.error(String.format("KafkaStringProducer send error.topic:[%s],partition[%s],dataList:[%s]", topic, partition, dataList), e);
}
return isSuc;
}
}

Consumer 部分

Consumer 在实例化后, 负责将ConsumerListener添加到列表, 并订阅指定的topic, 启动一个阻塞的循环, 在收到消息后依次调用ConsumerListener进行处理

接口 KafkaConsumer.java

import java.util.Properties;

public interface KafkaConsumer {

    default void init() {
} default void destroy() {
} void start(); /**
* 默认配置
*/
default Properties getDefaultProps() {
Properties props = new Properties();
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
props.put("session.timeout.ms", "30000");
return props;
}
}  

参数说明

Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("group.id", "test");
// Setting enable.auto.commit means that offsets are committed automatically with a frequency controlled by the config auto.commit.interval.ms.
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
// The deserializer settings specify how to turn bytes into objects. For example, by specifying string deserializers, we are saying that our record's key and value will just be simple strings.
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
// This consumer is subscribing to the topics foo and bar as part of a group of consumers called test as configured with group.id.
consumer.subscribe(Arrays.asList("foo", "bar"));
while (true) {
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records)
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
}

实现 KafkaConsumerImpl.java

import com.google.common.base.Strings;
import org.apache.kafka.clients.consumer.Consumer;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import java.util.*; public class KafkaConsumerImpl<K, V> implements KafkaConsumer {
private static final Logger logger = LoggerFactory.getLogger(KafkaConsumerImpl.class);
private final List<KafkaConsumerListener<K, V>> consumerListeners = new ArrayList<>();
private Consumer<K, V> consumer;
private boolean running = true; private final int waitingTimeout = 100; public KafkaConsumerImpl(String topic, String groupId, String deserializer) {
Properties props = this.getDefaultProps();
props.put("group.id", groupId);
props.put("bootstrap.servers", servers);
props.put("key.deserializer", deserializer);
props.put("value.deserializer", deserializer);
consumer = new org.apache.kafka.clients.consumer.KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList(topic));
} public void setConsumerListeners(List<KafkaConsumerListener<K, V>> consumerListeners) {
synchronized (this) {
this.consumerListeners.clear();
if (null != consumerListeners && 0 != consumerListeners.size()) {
consumerListeners.forEach(this.consumerListeners::add);
}
}
} public void addConsumerListener(KafkaConsumerListener<K, V> consumerListener) {
synchronized (this) {
if (null != consumerListener && !this.consumerListeners.contains(consumerListener)) {
this.consumerListeners.add(consumerListener);
}
}
} public void removeConsumerListener(KafkaConsumerListener<K, V> consumerListener) {
synchronized (this) {
if (null != consumerListener && this.consumerListeners.contains(consumerListener)) {
this.consumerListeners.remove(consumerListener);
}
}
} @Override
public void init() {
this.start();
} @Override
public void destroy() {
running = false;
} @Override
public void start() {
new Thread(() -> {
while (running) {
ConsumerRecords<K, V> records = consumer.poll(waitingTimeout);
for (ConsumerRecord<K, V> record : records) {
if (consumerListeners != null) {
K key = record.key();
if (key == null)
consumerListeners.forEach(consumer -> consumer.consume(record.value()));
else
consumerListeners.forEach(consumer -> consumer.consume(record.key(), record.value()));
}
}
}
//should use consumer in different thread, or it will throw ConcurrentModificationException
if (consumer != null) {
try {
logger.info("start to close consumer.");
consumer.close();
} catch (Exception e) {
logger.error("close kafka consumer error.", e);
}
consumer = null;
}
}).start();
}
}

接口 KafkaConsumerListener.java

public interface KafkaConsumerListener<K, V> {
void consume(V value); default void consume(K key, V value) {
consume(value);
}
}

.

在Java中使用Kafka的更多相关文章

  1. 精选干货 在java中创建kafka

    这个详细的教程将帮助你创建一个简单的Kafka生产者,该生产者可将记录发布到Kafka集群. 通过优锐课的java学习架构分享中,在本教程中,我们将创建一个简单的Java示例,该示例创建一个Kafka ...

  2. Java中的Unsafe类111

    1.Unsafe类介绍 Unsafe类是在sun.misc包下,不属于Java标准.但是很多Java的基础类库,包括一些被广泛使用的高性能开发库都是基于Unsafe类开发的,比如Netty.Hadoo ...

  3. Java 中的纤程库 – Quasar

    来源:鸟窝, colobu.com/2016/07/14/Java-Fiber-Quasar/ 如有好文章投稿,请点击 → 这里了解详情 最近遇到的一个问题大概是微服务架构中经常会遇到的一个问题: 服 ...

  4. spark streaming中维护kafka偏移量到外部介质

    spark streaming中维护kafka偏移量到外部介质 以kafka偏移量维护到redis为例. redis存储格式 使用的数据结构为string,其中key为topic:partition, ...

  5. CentOS中配置Kafka集群

    环境:三台虚拟机Host0,Host1,Host2 Host0:192.168.10.2 Host1:  192.168.10.3 Host2:  192.168.10.4 在三台虚拟机上配置zook ...

  6. 1.1 Introduction中 Apache Kafka™ is a distributed streaming platform. What exactly does that mean?(官网剖析)(博主推荐)

    不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Apache Kafka™ is a distributed streaming p ...

  7. CentOS7安装CDH 第九章:CDH中安装Kafka

    相关文章链接 CentOS7安装CDH 第一章:CentOS7系统安装 CentOS7安装CDH 第二章:CentOS7各个软件安装和启动 CentOS7安装CDH 第三章:CDH中的问题和解决方法 ...

  8. SUSE中搭建kafka

     搭建环境: JDK: java version 1.8.0_221 zookeeper:zookeeper-3.5.2 kafka: kafka-2.11-1.1.0 一.安装JDK 由于需要jav ...

  9. Springboot中使用kafka

    注:kafka消息队列默认采用配置消息主题进行消费,一个topic中的消息只能被同一个组(groupId)的消费者中的一个消费者消费. 1.在pom.xml依赖下新添加一下kafka依赖ar包 < ...

随机推荐

  1. UrlRewriter && IIS7

    为了在动态网站获得更好的url体验,往往采用url重写技术. 比如:http://blog.xujif.com/?p=268 可以重写为 http://blog.xujif.com/archives/ ...

  2. 样条之CatmullRom

    所谓样条曲线是指给定一组控制点而得到一条曲线,曲线的大致形状由这些点予以控制,一般可分为插值样条和逼近样条两种,插值样条通常用于数字化绘图或动画的设计,逼近样条一般用来构造物体的表面.CatmullR ...

  3. js操作XML文件兼容IE与FireFox

    最近项目中用到了xml,需求是用户安装产品时先把一系列的数据保存到xml文件中,当执行到最后一步时才写入数据库,这样最大限度的减少了数据库的访问,于是不得不纠结在各浏览器的兼容性的问题(悲哀啊.... ...

  4. Anciroid的IPC机制-Binder原理

    Binder驱动的原理和实现 通过上一节的介绍,大家应该对Binder有了基本的认识了.任何上层应用程序接口和用户操作都需要底层硬件设备驱动的支持,并为其提供各种操作接口.本节首先从Binder的驱动 ...

  5. Oracle学习笔记(6)——函数

    函数的作用 方便数据的统计 处理查询结果 函数的分类 Oracle内置的系统函数 数值函数 四舍五入                                             ROUND ...

  6. BiLSTM-CRF模型中CRF层的解读

    转自: https://createmomo.github.io/ BiLSTM-CRF模型中CRF层的解读: 文章链接: 标题:CRF Layer on the Top of BiLSTM - 1  ...

  7. vim上次和下次光标位置

    ctrl + I 下次光标位置 ctrl + o上次光标位置.

  8. (转)Unity3D研究院之将场景导出XML或JSON或二进制并且解析还原场景

    自:http://www.xuanyusong.com/archives/1919 导出Unity场景的所有游戏对象信息,一种是XML一种是JSON.本篇文章我们把游戏场景中游戏对象的.旋转.缩放.平 ...

  9. Android 7.1.1 之实现 3D Touch

    转载请注明出处:http://blog.csdn.net/yyh352091626/article/details/68962736 Shortcut概念 详细实现 BuildConfig 配置 静态 ...

  10. Docker container常用命令

    列出所有的container. docker container ls 启动一个container. docker run –p <host端口>: <container端口> ...