[OpenCV] Samples 15: Background Subtraction and Gaussian mixture models
不错的草稿。但进一步处理是必然的,也是难点所在。
Extended:
固定摄像头,采用Gaussian mixture models对背景建模。
OpenCV 中实现了两个版本的高斯混合背景/前景分割方法(Gaussian Mixture-based Background/Foreground Segmentation Algorithm),调用接口很明朗,效果也很好。
参见:[Scikit-learn] 2.1 Gaussian mixture models & EM
[1] 有趣的应用 之 背景替换:http://www.360doc.com/content/16/0709/07/7863900_574170269.shtml
[2] 手势识别(code, demo):FingerCounter_withMOG2_BGsubtractor

理论:http://blog.csdn.net/jinshengtao/article/details/26278725
混合高斯背景建模是基于像素样本统计信息的背景表示方法,
利用像素在较长时间内大量样本值的概率密度等统计信息(如模式数量、每个模式的均值和标准差)表示背景,
然后使用统计差分(如3σ原则)进行目标像素判断,可以对复杂动态背景进行建模,计算量较大。
在混合高斯背景模型中,认为像素之间的颜色信息互不相关,对各像素点的处理都是相互独立的。
对于视频图像中的每一个像素点,其值在序列图像中的变化可看作是不断产生像素值的随机过程,即用高斯分布来描述每个像素点的颜色呈现规律【单模态(单峰),多模态(多峰)】。
对于多峰高斯分布模型,图像的每一个像素点按不同权值的多个高斯分布的叠加来建模,每种高斯分布对应一个可能产生像素点所呈现颜色的状态,各个高斯分布的权值和分布参数随时间更新。
当处理彩色图像时,假定图像像素点R、G、B三色通道相互独立并具有相同的方差。对于随机变量X的观测数据集{x1,x2,…,xN},xt=(rt,gt,bt)为t时刻像素的样本,则单个采样点xt其服从的混合高斯分布概率密度函数:
其中k为分布模式总数,η(xt,μi,t, τi,t)为t时刻第i个高斯分布,μi,t为其均值,τi,t为其协方差矩阵,δi,t为方差,I为三维单位矩阵,ωi,t为t时刻第i个高斯分布的权重。
详细算法流程:http://www.cnblogs.com/yingying0907/archive/2012/07/22/2603452.html
混合高斯模型使用K(基本为3到5个)个高斯模型来表征图像中各个像素点的特征,在新一帧图像获得后更新混合高斯模型, 用当前图像中的每个像素点与混合高斯模型匹配:如果成功则判定该点为背景点, 否则为前景点。
通观整个高斯模型,主要是有方差和均值两个参数决定,对均值和方差的学习,采取不同的学习机制,将直接影响到模型的稳定性、精确性和收敛性 。
由于我们是对运动目标的背景提取建模,因此需要对高斯模型中方差和均值两个参数实时更新。
为提高模型的学习能力,改进方法对均值和方差的更新采用不同的学习率;
为提高在繁忙的场景下,大而慢的运动目标的检测效果,引入权值均值的概念,建立背景图像并实时更新,然后结合权值、权值均值和背景图像对像素点进行前景和背景的分类。
到这里为止,混合高斯模型的建模基本完成,我在归纳一下其中的流程:
- 首先初始化预先定义的几个高斯模型,对高斯模型中的参数进行初始化,并求出之后将要用到的参数。
- 其次,对于每一帧中的每一个像素进行处理,看其是否匹配某个模型,
- 若匹配,则将其归入该模型中,并对该模型根据新的像素值进行更新,
- 若不匹配,则以该像素建立一个高斯模型,初始化参数,代理原有模型中最不可能的模型。
- 最后选择前面几个最有可能的模型作为背景模型,为背景目标提取做铺垫。
From: http://docs.opencv.org/master/d1/dc5/tutorial_background_subtraction.html#gsc.tab=0
//opencv
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/videoio.hpp"
#include <opencv2/highgui.hpp>
#include <opencv2/video.hpp>
//C
#include <stdio.h>
//C++
#include <iostream>
#include <sstream>
using namespace cv;
using namespace std;
// Global variables
Mat frame; //current frame
Mat fgMaskMOG2; //fg mask fg mask generated by MOG2 method
Ptr<BackgroundSubtractor> pMOG2; //MOG2 Background subtractor
int keyboard; //input from keyboard
void help();
void processVideo(char* videoFilename);
void processImages(char* firstFrameFilename);
void help()
{
cout
<< "--------------------------------------------------------------------------" << endl
<< "This program shows how to use background subtraction methods provided by " << endl
<< " OpenCV. You can process both videos (-vid) and images (-img)." << endl
<< endl
<< "Usage:" << endl
<< "./bg_sub {-vid <video filename>|-img <image filename>}" << endl
<< "for example: ./bg_sub -vid video.avi" << endl
<< "or: ./bg_sub -img /data/images/1.png" << endl
<< "--------------------------------------------------------------------------" << endl
<< endl;
}
int main(int argc, char* argv[])
{
//print help information
help();
//check for the input parameter correctness
if(argc != 3) {
cerr <<"Incorret input list" << endl;
cerr <<"exiting..." << endl;
return EXIT_FAILURE;
}
//create GUI windows
namedWindow("Frame");
namedWindow("FG Mask MOG 2");
//create Background Subtractor objects
pMOG2 = createBackgroundSubtractorMOG2(); //MOG2 approach
if(strcmp(argv[1], "-vid") == 0) {
//input data coming from a video
processVideo(argv[2]);
}
else if(strcmp(argv[1], "-img") == 0) {
//input data coming from a sequence of images
processImages(argv[2]);
}
else {
//error in reading input parameters
cerr <<"Please, check the input parameters." << endl;
cerr <<"Exiting..." << endl;
return EXIT_FAILURE;
}
//destroy GUI windows
destroyAllWindows();
return EXIT_SUCCESS;
} void processVideo(char* videoFilename) {
//create the capture object
VideoCapture capture(videoFilename);
if(!capture.isOpened()){
//error in opening the video input
cerr << "Unable to open video file: " << videoFilename << endl;
exit(EXIT_FAILURE);
}
//read input data. ESC or 'q' for quitting
while( (char)keyboard != 'q' && (char)keyboard != 27 ){
//read the current frame
if(!capture.read(frame)) {
cerr << "Unable to read next frame." << endl;
cerr << "Exiting..." << endl;
exit(EXIT_FAILURE);
}
//update the background model
pMOG2->apply(frame, fgMaskMOG2);
//get the frame number and write it on the current frame
stringstream ss;
rectangle(frame, cv::Point(10, 2), cv::Point(100,20),
cv::Scalar(255,255,255), -1);
ss << capture.get(CAP_PROP_POS_FRAMES);
string frameNumberString = ss.str();
putText(frame, frameNumberString.c_str(), cv::Point(15, 15),
FONT_HERSHEY_SIMPLEX, 0.5 , cv::Scalar(0,0,0));
//show the current frame and the fg masks
imshow("Frame", frame);
imshow("FG Mask MOG 2", fgMaskMOG2);
//get the input from the keyboard
keyboard = waitKey( 30 );
}
//delete capture object
capture.release();
} void processImages(char* fistFrameFilename) {
//read the first file of the sequence
frame = imread(fistFrameFilename);
if(frame.empty()){
//error in opening the first image
cerr << "Unable to open first image frame: " << fistFrameFilename << endl;
exit(EXIT_FAILURE);
}
//current image filename
string fn(fistFrameFilename);
//read input data. ESC or 'q' for quitting
while( (char)keyboard != 'q' && (char)keyboard != 27 ){
//update the background model
pMOG2->apply(frame, fgMaskMOG2);
//get the frame number and write it on the current frame
size_t index = fn.find_last_of("/");
if(index == string::npos) {
index = fn.find_last_of("\\");
}
size_t index2 = fn.find_last_of(".");
string prefix = fn.substr(0,index+1);
string suffix = fn.substr(index2);
string frameNumberString = fn.substr(index+1, index2-index-1);
istringstream iss(frameNumberString);
int frameNumber = 0;
iss >> frameNumber;
rectangle(frame, cv::Point(10, 2), cv::Point(100,20),
cv::Scalar(255,255,255), -1);
putText(frame, frameNumberString.c_str(), cv::Point(15, 15),
FONT_HERSHEY_SIMPLEX, 0.5 , cv::Scalar(0,0,0));
//show the current frame and the fg masks
imshow("Frame", frame);
imshow("FG Mask MOG 2", fgMaskMOG2);
//get the input from the keyboard
keyboard = waitKey( 30 );
//search for the next image in the sequence
ostringstream oss;
oss << (frameNumber + 1);
string nextFrameNumberString = oss.str();
string nextFrameFilename = prefix + nextFrameNumberString + suffix;
//read the next frame
frame = imread(nextFrameFilename);
if(frame.empty()){
//error in opening the next image in the sequence
cerr << "Unable to open image frame: " << nextFrameFilename << endl;
exit(EXIT_FAILURE);
}
//update the path of the current frame
fn.assign(nextFrameFilename);
}
}
[OpenCV] Samples 15: Background Subtraction and Gaussian mixture models的更多相关文章
- [Scikit-learn] 2.1 Clustering - Gaussian mixture models & EM
原理请观良心视频:机器学习课程 Expectation Maximisation Expectation-maximization is a well-founded statistical algo ...
- Gaussian Mixture Models and the EM algorithm汇总
Gaussian Mixture Models and the EM algorithm汇总 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 漫谈 ...
- [OpenCV] Samples 13: opencv_version
cv::CommandLineParser的使用. I suppose CommandLineParser::has("something") should be true whe ...
- [Scikit-learn] 2.1 Clustering - Variational Bayesian Gaussian Mixture
最重要的一点是:Bayesian GMM为什么拟合的更好? PRML 这段文字做了解释: Ref: http://freemind.pluskid.org/machine-learning/decid ...
- [zz] 混合高斯模型 Gaussian Mixture Model
聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...
- [OpenCV] Samples 16: Decompose and Analyse RGB channels
物体的颜色特征决定了灰度处理不是万能,对RGB分别处理具有相当的意义. #include <iostream> #include <stdio.h> #include &quo ...
- 聚类之高斯混合模型(Gaussian Mixture Model)【转】
k-means应该是原来级别的聚类方法了,这整理下一个使用后验概率准确评测其精度的方法—高斯混合模型. 我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussia ...
- 漫谈 Clustering (3): Gaussian Mixture Model
上一次我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 GMM ...
- Gaussian Mixture Model
Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 GMM 是学习出一些概率密度函数来(所以 GMM 除了用在 clustering 上之外,还经 ...
随机推荐
- azkaban安装
1.下载:git clone https://github.com/azkaban/azkaban.git 2.编译:./gradlew build -x test 3. 创建目录并拷贝 mkdir ...
- Windows API 常用函数
.Net中虽然类库很强的,但还是有些时候功能有限,掌握常用的api函数,会给我们解决问题提供另一种思路,下面给出自己常用到的Api函数,以备查询. 知道api函数,但却不知道c#或VB.net该如何声 ...
- 根据map键值对,生成update与select语句,单条执行语句
方法 constructUpdateSQL private static String constructUpdateSQL(String tableName, List<Map<Stri ...
- 你真的理解devDependencies和dependencies区别吗?
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/achenyuan/article/details/80899783 网上统一的观念是 devDep ...
- WebRTC源码分析(一):安卓相机采集实现分析
WebRTC 的代码量不小,一次性看明白不太现实,在本系列中,我将试图搞清楚三个问题: 客户端之间如何建立连接? 客户端之间如何实现数据传输? 音视频数据的采集.预览.编码.传输.解码.渲染完整流程. ...
- Sword pcre库函数学习一
0.pcre_exec 原型: #include <pcre.h> int pcre_exec(const pcre *code, const pcre_extra *extra, con ...
- Hbase框架原理及相关的知识点理解、Hbase访问MapReduce、Hbase访问Java API、Hbase shell及Hbase性能优化总结
转自:http://blog.csdn.net/zhongwen7710/article/details/39577431 本blog的内容包含: 第一部分:Hbase框架原理理解 第二部分:Hbas ...
- 在C++中调用DLL中的函数(2)
本文转自:http://blog.sina.com.cn/s/blog_53004b4901009h3b.html 应用程序使用DLL可以采用两种方式: 一种是隐式链接,另一种是显式链接.在使用DLL ...
- oauth2.0服务端与客户端搭建
oauth2.0服务端与客户端搭建 - 推酷 今天搭建了oauth2.0服务端与客户端.把搭建的过程记录一下.具体实现的功能是:client.ruanwenwu.cn的用户能够通过 server.ru ...
- 【CUDA学习】__syncthreads的理解
__syncthreads()是cuda的内建函数,用于块内线程通信. __syncthreads() is you garden variety thread barrier. Any thread ...