POJ-1975 Median Weight Bead(Floyed)
Median Weight Bead
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 3162 Accepted: 1630
Description
There are N beads which of the same shape and size, but with different weights. N is an odd number and the beads are labeled as 1, 2, …, N. Your task is to find the bead whose weight is median (the ((N+1)/2)th among all beads). The following comparison has been performed on some pairs of beads:
A scale is given to compare the weights of beads. We can determine which one is heavier than the other between two beads. As the result, we now know that some beads are heavier than others. We are going to remove some beads which cannot have the medium weight.
For example, the following results show which bead is heavier after M comparisons where M=4 and N=5.
1. Bead 2 is heavier than Bead 1.
Bead 4 is heavier than Bead 3.
Bead 5 is heavier than Bead 1.
Bead 4 is heavier than Bead 2.
From the above results, though we cannot determine exactly which is the median bead, we know that Bead 1 and Bead 4 can never have the median weight: Beads 2, 4, 5 are heavier than Bead 1, and Beads 1, 2, 3 are lighter than Bead 4. Therefore, we can remove these two beads.
Write a program to count the number of beads which cannot have the median weight.
Input
The first line of the input file contains a single integer t (1 <= t <= 11), the number of test cases, followed by the input data for each test case. The input for each test case will be as follows:
The first line of input data contains an integer N (1 <= N <= 99) denoting the number of beads, and M denoting the number of pairs of beads compared. In each of the next M lines, two numbers are given where the first bead is heavier than the second bead.
Output
There should be one line per test case. Print the number of beads which can never have the medium weight.
Sample Input
1
5 4
2 1
4 3
5 1
4 2
Sample Output
2
用两次Floyed就可以了
#include <iostream>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
int a[105][105];
int b[105][105];
int n,m;
void floyed1()
{
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i!=j&&a[i][k]&&a[k][j])
a[i][j]=1;
}
}
}
}
void floyed2()
{
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i!=j&&b[i][k]&&b[k][j])
b[i][j]=1;
}
}
}
}
int main()
{
int t;
int x,y;
scanf("%d",&t);
while(t--)
{
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
a[x][y]=1;
b[y][x]=1;
}
floyed1();
floyed2();
int res=0;
for(int i=1;i<=n;i++)
{
int num1=0;
for(int j=1;j<=n;j++)
{
if(a[i][j])
num1++;
}
int num2=0;
for(int j=1;j<=n;j++)
{
if(b[i][j])
num2++;
}
if(num1>(n/2)||num2>(n/2))
res++;
}
printf("%d\n",res);
}
}
POJ-1975 Median Weight Bead(Floyed)的更多相关文章
- poj 1975 Median Weight Bead(传递闭包 Floyd)
链接:poj 1975 题意:n个珠子,给定它们之间的重量关系.按重量排序.求确定肯定不排在中间的珠子的个数 分析:由于n为奇数.中间为(n+1)/2,对于某个珠子.若有至少有(n+1)/2个珠子比它 ...
- POJ 1975 Median Weight Bead
Median Weight Bead Time Limit: 1000ms Memory Limit: 30000KB This problem will be judged on PKU. Orig ...
- Median Weight Bead(最短路—floyed传递闭包)
Description There are N beads which of the same shape and size, but with different weights. N is an ...
- POJ 1979 Red and Black (红与黑)
POJ 1979 Red and Black (红与黑) Time Limit: 1000MS Memory Limit: 30000K Description 题目描述 There is a ...
- POJ 3268 Silver Cow Party (最短路径)
POJ 3268 Silver Cow Party (最短路径) Description One cow from each of N farms (1 ≤ N ≤ 1000) convenientl ...
- POJ.3087 Shuffle'm Up (模拟)
POJ.3087 Shuffle'm Up (模拟) 题意分析 给定两个长度为len的字符串s1和s2, 接着给出一个长度为len*2的字符串s12. 将字符串s1和s2通过一定的变换变成s12,找到 ...
- POJ.1426 Find The Multiple (BFS)
POJ.1426 Find The Multiple (BFS) 题意分析 给出一个数字n,求出一个由01组成的十进制数,并且是n的倍数. 思路就是从1开始,枚举下一位,因为下一位只能是0或1,故这个 ...
- 【ACM/ICPC2013】POJ基础图论题简析(一)
前言:昨天contest4的惨败经历让我懂得要想在ACM领域拿到好成绩,必须要真正的下苦功夫,不能再浪了!暑假还有一半,还有时间!今天找了POJ的分类题库,做了简单题目类型中的图论专题,还剩下二分图和 ...
- POJ1975 Median Weight Bead floyd传递闭包
Description There are N beads which of the same shape and size, but with different weights. N is an ...
随机推荐
- feign的callback设定后,项目启动错误
错误如下: Error starting ApplicationContext. To display the auto-configuration report re-run your applic ...
- python 捕捉错误,exception,traceback和sys.exc_info()比较
import traceback,sys import requests try : requests.get('dsdsd') ##故意让他出错 except Exception,e: print ...
- hdu5289 2015多校联合第一场1002 Assignment
题意:给出一个数列.问当中存在多少连续子区间,当中子区间的(最大值-最小值)<k 思路:设dp[i]为从区间1到i满足题意条件的解.终于解即为dp[n]. 此外 如果对于arr[i] 往左遍历 ...
- Linux 查看目录大小及文件数量命令
查看当前目录大小: [root@21andy.com]# du -sh 查看指定目录大小: [root@21andy.com]# du -sh /www/21andy.com 查看当前目录文件总数: ...
- MQTT服务器搭建--Mosquitto用户名密码配置
Mosquitto用户认证配置 前言:基于Mosquitto服务器已经搭建成功,大部分都是采用默认的是允许匿名用户登录模式,正式上线的系统需要进行用户认证. 1.用户参数说明 Mosquitto服务器 ...
- Lua中的closure(闭合函数)
词法域:若将一个函数写在另一个函数之内,那么这个位于内部的函数便可以访问外部函数中的局部变量,这项特征称之为“词法域”. 例:假设有一个学生姓名的列表和一个对应于没个姓名的年级列表,需要根据每个学生的 ...
- JSP基本用法(二)隐含对象
一.摘要 在JSP容器中生成的Servlet类的_jspService()方法中,定义了几个对象,在编写JSP页面时我们可以使用这些隐含对象. PageContext pageContext = nu ...
- 【Spring Boot && Spring Cloud系列】那些Spring Boot中踩过的坑
一.不连接数据库启动springboot报错 Cannot determine embedded database driver class for database type NONE 原因:Spr ...
- jQuery事件处理(五)
对原生js不熟悉看jQuery会困难很多.后续需要更多的关注下原生js jQuery封装之后的事件触发,其中一个分支(处理普通事件)是通过:elem.addEventListener( type, e ...
- python的高级特性:切片,迭代,列表生成式,生成器,迭代器
python的高级特性:切片,迭代,列表生成式,生成器,迭代器 #演示切片 k="abcdefghijklmnopqrstuvwxyz" #取前5个元素 k[0:5] k[:5] ...