#coding=utf8
# 从sklearn.datasets导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从sklearn.model_selection中导入train_test_split用于数据分割。
from sklearn.model_selection import train_test_split
# 导入numpy并重命名为np。
import numpy as np
# 从sklearn.preprocessing导入数据标准化模块。
from sklearn.preprocessing import StandardScaler

# 从读取房价数据存储在变量boston中。
boston = load_boston()
X = boston.data
y = boston.target

# 随机采样25%的数据构建测试样本,其余作为训练样本。
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)

# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()

# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)

y_train = ss_y.fit_transform(y_train)
y_test = ss_y.transform(y_test)

# 从sklearn.linear_model导入LinearRegression。
from sklearn.linear_model import LinearRegression

# 使用默认配置初始化线性回归器LinearRegression。
lr = LinearRegression()
# 使用训练数据进行参数估计。
lr.fit(X_train, y_train)
# 对测试数据进行回归预测。
lr_y_predict = lr.predict(X_test)
# 使用LinearRegression模型自带的评估模块,并输出评估结果。
print 'The value of default measurement of LinearRegression is', lr.score(X_test, y_test)

# 从sklearn.metrics依次导入r2_score、mean_squared_error以及mean_absoluate_error用于回归性能的评估。
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error

# 使用r2_score模块,并输出评估结果。
print 'The value of R-squared of LinearRegression is', r2_score(y_test, lr_y_predict)

# 使用mean_squared_error模块,并输出评估结果。
print 'The mean squared error of LinearRegression is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))

# 使用mean_absolute_error模块,并输出评估结果。
print 'The mean absoluate error of LinearRegression is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))

# 从sklearn.linear_model导入SGDRegressor。
from sklearn.linear_model import SGDRegressor

# 使用默认配置初始化线性回归器SGDRegressor。
sgdr = SGDRegressor()
# 使用训练数据进行参数估计。
sgdr.fit(X_train, y_train)
# 对测试数据进行回归预测。
sgdr_y_predict = sgdr.predict(X_test)
# 使用SGDRegressor模型自带的评估模块,并输出评估结果。
print 'The value of default measurement of SGDRegressor is', sgdr.score(X_test, y_test)

# 使用r2_score模块,并输出评估结果。
print 'The value of R-squared of SGDRegressor is', r2_score(y_test, sgdr_y_predict)

# 使用mean_squared_error模块,并输出评估结果。
print 'The mean squared error of SGDRegressor is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(sgdr_y_predict))

# 使用mean_absolute_error模块,并输出评估结果。
print 'The mean absoluate error of SGDRegressor is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(sgdr_y_predict))

类似:

chapter02 回归模型在''美国波士顿房价预测''问题中实践的更多相关文章

  1. SPSS分析技术:无序多元Logistic回归模型;美国总统大选的预测历史及预测模型

    SPSS分析技术:无序多元Logistic回归模型:美国总统大选的预测历史及预测模型 在介绍有序多元Logistic回归分析的理论基础时,介绍过该模型公式有一个非常重要的假设,就是自变量对因变量多个类 ...

  2. 波士顿房价预测 - 最简单入门机器学习 - Jupyter

    机器学习入门项目分享 - 波士顿房价预测 该分享源于Udacity机器学习进阶中的一个mini作业项目,用于入门非常合适,刨除了繁琐的部分,保留了最关键.基本的步骤,能够对机器学习基本流程有一个最清晰 ...

  3. 机器学习实战二:波士顿房价预测 Boston Housing

    波士顿房价预测 Boston housing 这是一个波士顿房价预测的一个实战,上一次的Titantic是生存预测,其实本质上是一个分类问题,就是根据数据分为1或为0,这次的波士顿房价预测更像是预测一 ...

  4. Tensorflow之多元线性回归问题(以波士顿房价预测为例)

    一.根据波士顿房价信息进行预测,多元线性回归+特征数据归一化 #读取数据 %matplotlib notebook import tensorflow as tf import matplotlib. ...

  5. 《用Python玩转数据》项目—线性回归分析入门之波士顿房价预测(二)

    接上一部分,此篇将用tensorflow建立神经网络,对波士顿房价数据进行简单建模预测. 二.使用tensorflow拟合boston房价datasets 1.数据处理依然利用sklearn来分训练集 ...

  6. 【udacity】机器学习-波士顿房价预测小结

    Evernote Export 机器学习的运行步骤 1.导入数据 没什么注意的,成功导入数据集就可以了,打印看下数据的标准格式就行 用个info和describe 2.分析数据 这里要详细分析数据的内 ...

  7. 基于sklearn的波士顿房价预测_线性回归学习笔记

    > 以下内容是我在学习https://blog.csdn.net/mingxiaod/article/details/85938251 教程时遇到不懂的问题自己查询并理解的笔记,由于sklear ...

  8. 【udacity】机器学习-波士顿房价预测

    import numpy as np import pandas as pd from Udacity.model_check.boston_house_price import visuals as ...

  9. AdaBoost 算法-分析波士顿房价数据集

    公号:码农充电站pro 主页:https://codeshellme.github.io 在机器学习算法中,有一种算法叫做集成算法,AdaBoost 算法是集成算法的一种.我们先来看下什么是集成算法. ...

随机推荐

  1. 重新拾取的jquery

    最新JQ API学习地址:http://www.css88.com/jqapi-1.9/error/

  2. js 去重

        function unique(array) { let obj = {}; return array.filter((item, index, array) => { let newI ...

  3. English trip V1 - 7.My dream car 我梦想的车 Teacher:Lamb Key: famous for

    中华In this lesson you will learn to describe an object(目标). 课上内容(Lesson) famous for   以…著称,闻名 国家(名词)  ...

  4. 2018焦作网络赛Mathematical Curse

    题意:开始有个数k,有个数组和几个运算符.遍历数组的过程中花费一个运算符和数组当前元素运算.运算符必须按顺序花费,并且最后要花费完.问得到最大结果. 用maxv[x][y]记录到第x个元素,用完了第y ...

  5. PHP函数总结 (三)

    <?php/** * PHP变量的范围 * 1.局部变量(内部变量) * 在函数内部声明的变量,作用域仅限于函数内部,参数也是局部变量:执行完毕后函数内部的变量都被释放 * 若需要使用函数内的变 ...

  6. python-day52--前端html、css

    一.html需掌握的: 1. img标签 属性:src alt title width height 2. a标签 属性:href target 3. ul 标签及li 标签,二者都是块级标签 ul ...

  7. secureCRT启动xmanager图形化工具

    secureCRT启动xmanager图形化工具 2014年9月17日 11:42 secureCRT是我们在维护UNIX或者linux的重要工具.xmanager 工具是连接UNIX或者linux的 ...

  8. 一篇分析诊断被&quot;hang&quot;住数据库的资料(Oracle Performance Diagnostic Guide——Hang/Locking)

    该资料已上传至本人QQ群空间,如需该资料,可到本人QQ群空间查找.下面贴表文本: Oracle Performance Diagnostic GuideHang/LockingVersion 3.1. ...

  9. setuid和setgid

    关于有效用户,实际用户的问题,参考: http://www.cnblogs.com/kunhu/p/3699883.html 内核对进程存取文件的许可检查,是通过考查进程的有效用户ID来实现的的. 在 ...

  10. 自己写的一个delphi正整数快速排序

    type   TIntArr= array of word; procedure MyQSort(var arr: TIntArr; low: word; high: word); //word可以改 ...