#coding=utf8
# 从sklearn.datasets导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从sklearn.model_selection中导入train_test_split用于数据分割。
from sklearn.model_selection import train_test_split
# 导入numpy并重命名为np。
import numpy as np
# 从sklearn.preprocessing导入数据标准化模块。
from sklearn.preprocessing import StandardScaler

# 从读取房价数据存储在变量boston中。
boston = load_boston()
X = boston.data
y = boston.target

# 随机采样25%的数据构建测试样本,其余作为训练样本。
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)

# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()

# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)

y_train = ss_y.fit_transform(y_train)
y_test = ss_y.transform(y_test)

# 从sklearn.linear_model导入LinearRegression。
from sklearn.linear_model import LinearRegression

# 使用默认配置初始化线性回归器LinearRegression。
lr = LinearRegression()
# 使用训练数据进行参数估计。
lr.fit(X_train, y_train)
# 对测试数据进行回归预测。
lr_y_predict = lr.predict(X_test)
# 使用LinearRegression模型自带的评估模块,并输出评估结果。
print 'The value of default measurement of LinearRegression is', lr.score(X_test, y_test)

# 从sklearn.metrics依次导入r2_score、mean_squared_error以及mean_absoluate_error用于回归性能的评估。
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error

# 使用r2_score模块,并输出评估结果。
print 'The value of R-squared of LinearRegression is', r2_score(y_test, lr_y_predict)

# 使用mean_squared_error模块,并输出评估结果。
print 'The mean squared error of LinearRegression is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))

# 使用mean_absolute_error模块,并输出评估结果。
print 'The mean absoluate error of LinearRegression is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))

# 从sklearn.linear_model导入SGDRegressor。
from sklearn.linear_model import SGDRegressor

# 使用默认配置初始化线性回归器SGDRegressor。
sgdr = SGDRegressor()
# 使用训练数据进行参数估计。
sgdr.fit(X_train, y_train)
# 对测试数据进行回归预测。
sgdr_y_predict = sgdr.predict(X_test)
# 使用SGDRegressor模型自带的评估模块,并输出评估结果。
print 'The value of default measurement of SGDRegressor is', sgdr.score(X_test, y_test)

# 使用r2_score模块,并输出评估结果。
print 'The value of R-squared of SGDRegressor is', r2_score(y_test, sgdr_y_predict)

# 使用mean_squared_error模块,并输出评估结果。
print 'The mean squared error of SGDRegressor is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(sgdr_y_predict))

# 使用mean_absolute_error模块,并输出评估结果。
print 'The mean absoluate error of SGDRegressor is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(sgdr_y_predict))

类似:

chapter02 回归模型在''美国波士顿房价预测''问题中实践的更多相关文章

  1. SPSS分析技术:无序多元Logistic回归模型;美国总统大选的预测历史及预测模型

    SPSS分析技术:无序多元Logistic回归模型:美国总统大选的预测历史及预测模型 在介绍有序多元Logistic回归分析的理论基础时,介绍过该模型公式有一个非常重要的假设,就是自变量对因变量多个类 ...

  2. 波士顿房价预测 - 最简单入门机器学习 - Jupyter

    机器学习入门项目分享 - 波士顿房价预测 该分享源于Udacity机器学习进阶中的一个mini作业项目,用于入门非常合适,刨除了繁琐的部分,保留了最关键.基本的步骤,能够对机器学习基本流程有一个最清晰 ...

  3. 机器学习实战二:波士顿房价预测 Boston Housing

    波士顿房价预测 Boston housing 这是一个波士顿房价预测的一个实战,上一次的Titantic是生存预测,其实本质上是一个分类问题,就是根据数据分为1或为0,这次的波士顿房价预测更像是预测一 ...

  4. Tensorflow之多元线性回归问题(以波士顿房价预测为例)

    一.根据波士顿房价信息进行预测,多元线性回归+特征数据归一化 #读取数据 %matplotlib notebook import tensorflow as tf import matplotlib. ...

  5. 《用Python玩转数据》项目—线性回归分析入门之波士顿房价预测(二)

    接上一部分,此篇将用tensorflow建立神经网络,对波士顿房价数据进行简单建模预测. 二.使用tensorflow拟合boston房价datasets 1.数据处理依然利用sklearn来分训练集 ...

  6. 【udacity】机器学习-波士顿房价预测小结

    Evernote Export 机器学习的运行步骤 1.导入数据 没什么注意的,成功导入数据集就可以了,打印看下数据的标准格式就行 用个info和describe 2.分析数据 这里要详细分析数据的内 ...

  7. 基于sklearn的波士顿房价预测_线性回归学习笔记

    > 以下内容是我在学习https://blog.csdn.net/mingxiaod/article/details/85938251 教程时遇到不懂的问题自己查询并理解的笔记,由于sklear ...

  8. 【udacity】机器学习-波士顿房价预测

    import numpy as np import pandas as pd from Udacity.model_check.boston_house_price import visuals as ...

  9. AdaBoost 算法-分析波士顿房价数据集

    公号:码农充电站pro 主页:https://codeshellme.github.io 在机器学习算法中,有一种算法叫做集成算法,AdaBoost 算法是集成算法的一种.我们先来看下什么是集成算法. ...

随机推荐

  1. Codeforces 595C - Warrior and Archer

    595C - Warrior and Archer 思路:设最后答案的区间为[l,r],那么r-l等于n/2,因为在(l,r)中的点都是其中一个人挖掉的,[0,l)和(r,n]中的点是另一个人挖掉的, ...

  2. Java JDK5新特性-静态导入

    2017-10-31 00:10:50 静态导入格式:import static 包名 ...类名.方法名: 也就说可以直接导入到方法名. 注意: 方法必须是静态的 如果有多个同名的静态方法,容易不知 ...

  3. ubuntu , 笔记本合上盖子时不关机的方法。

    实测ubuntu 14.04 好使 1) 编辑 /etc/systemd/logind.conf 2) 找到 HandleLidSwitch 设置,去掉行头注释#,然后改成下面这样 HandleLid ...

  4. [Java学习] Java super关键字

    super 关键字与 this 类似,this 用来表示当前类的实例,super 用来表示父类. super 可以用在子类中,通过点号(.)来获取父类的成员变量和方法.super 也可以用在子类的子类 ...

  5. English Words Type

    经常见到的: v = 动词,兼指及物动词和不及物动词,verb的缩写 n = 名词,noun的缩写 adj = 形容词, adjective的缩写 adv.表示副词, adverb的缩写 prep.表 ...

  6. IP分类

    IP: IP分为公有ip和私有ip. 私有ip分为以下5类: 类别 ip范围 子网掩码 A 1.0.0.0------127.255.255.255 255.0.0.0 B 128.0.0.0---1 ...

  7. 二分求LIS并打印结果

    1275: God's ladder [DP] 时间限制: 1 Sec 内存限制: 128 MB  Special Judge 题目描述 天明来到神之宫殿,在他眼前出现了若干个石柱,每个石柱上有1枚金 ...

  8. Leetcode 526

    class Solution { public: int countArrangement(int N) { vector<int> nums; ;i <= N;i++) nums. ...

  9. dp练习(10)——拦截导弹

    1044 拦截导弹 1999年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Descripti ...

  10. 33. 81. Search in Rotated Sorted Array *HARD*

    Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 migh ...