吴裕雄 实战PYTHON编程(8)
import pandas as pd
df = pd.DataFrame( {"林大明":[65,92,78,83,70], "陈聪明":[90,72,76,93,56], "黄美丽":[81,85,91,89,77], "熊小娟":[79,53,47,94,80] } )
print(df)
import pandas as pd
datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print(df)
import pandas as pd
datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
indexs[0] = "林晶辉"
df.index = indexs
columns[3] = "理化"
df.columns = columns
print(df)
import pandas as pd
datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print('df["自然"] ->')
print(df["自然"])
print()
print('df[["语文", "数学", "自然"] ->')
print(df[["语文", "数学", "自然"]])
print()
print('df[df.数学>=80] ->')
print(df[df.数学 >= 80])
import pandas as pd
datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print("df.values:")
print(df.values)
print("陈聪明的成绩(df.values[1]):")
print(df.values[1])
print("陈聪明的英文成绩(df.values[1][2]):")
print(df.values[1][2])
import pandas as pd
datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print(df)
print('df.loc["陈聪明", :] ->')
print(df.loc["陈聪明", :])
#print(df.loc["陈聪明"])
print()
print('df.loc["陈聪明"]["数学"] ->')
print(df.loc["陈聪明"]["数学"])
print()
print('df.loc[("陈聪明", "熊小娟") ->')
print(df.loc[("陈聪明", "熊小娟"), :])
print()
print('df.loc[:, "数学"] ->')
print(df.loc[:, "数学"])
print()
print('df.loc[("陈聪明", "熊小娟"), ("数学", "自然")] ->')
print(df.loc[("陈聪明", "熊小娟"), ("数学", "自然")])
print()
print('df.loc["陈聪明":"熊小娟", "数学":"社会"] ->')
print(df.loc["陈聪明":"熊小娟", "数学":"社会"])
print()
print('df.loc[:黄美丽, "数学":"社会"] ->')
print(df.loc[:"黄美丽", "数学":"社会"])
print()
print('df.loc["陈聪明":, "数学":"社会"] ->')
print(df.loc["陈聪明":, "数学":"社会"])
import pandas as pd
datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print(df)
print('df.iloc[1, :] ->')
print(df.iloc[1, :])
print()
print('df.iloc[1][1] ->')
print(df.iloc[1][1])
import pandas as pd
datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print(df)
print('陈聪明的数学科成绩 ->')
print(df.ix["陈聪明"]["数学"])
print(df.ix["陈聪明"][1])
print(df.ix[1]["数学"])
print(df.ix[1][1])
import pandas as pd
datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print(df)
print('最前 2 位学生成绩 ->')
print(df.head(2))
print()
print('最后 2 位学生成绩 ->')
print(df.tail(2))
import pandas as pd
datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print(df)
print('df.ix["陈聪明"]["数学"] (原始):' + str(df.loc["陈聪明"]["数学"]))
df.ix["陈聪明"]["数学"] = 91
print('df.ix["陈聪明"]["数学"] (修改):' + str(df.loc["陈聪明"]["数学"]))
print()
print('df.ix["陈聪明", :] ->')
df.ix["陈聪明", :] = 80
print(df.ix["陈聪明", :])
import pandas as pd
datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print(df)
print('按照数学成绩降序排序 ->')
df1 = df.sort_values(by="数学", ascending=False)
print(df1)
print()
print('按照列标题升序排序 ->')
df2 = df.sort_index(axis=0)
print(df2)
print()
import pandas as pd
datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print(df)
print('删除陈聪明成绩 ->')
df1 = df.drop("陈聪明")
print(df1)
print()
print('删除数学成绩 ->')
df2 = df.drop("数学", axis=1)
print(df2)
print()
print('删除数学及自然成绩 ->')
df3 = df.drop(["数学", "自然"], axis=1)
print(df3)
print()
print('删除从陈聪明到熊小娟成绩 ->')
df4 = df.drop(df.index[1:4])
print(df4)
print()
print('删除从数学到自然的成绩 ->')
df5 = df.drop(df.columns[1:4], axis=1)
print(df5)
print()
import pandas as pd
dt = pd.read_html("http://www.86pm25.com/city/beijing.html")
data=dt[0]
print(data)
import pandas as pd
tables = pd.read_html("http://value500.com/M2GDP.html")
n = 1
for table in tables:
print("第 " + str(n) + " 个表格:")
print(table.head())
print()
n += 1
import pandas as pd
tables = pd.read_html("http://value500.com/M2GDP.html")
table = tables[18]
table = table.drop(table.index[0:1])
table.columns = ["年份", "M2指标", "GDP绝对额", "M2/GDP"]
table.index = range(len(table.index))
print(table)
import pandas as pd
from pylab import *
rcParams['font.sans-serif'] = ['SimHei'] #设置中文显示
datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
df.plot()
def rbCity(): #单击区县按钮的处理函数
global sitelist, listradio
sitelist.clear() #清除原有监测站点列表
for r in listradio: #删除原有监测站点按钮
r.destroy()
n=0
for c1 in data["监测站点"]: #逐一取出所选区县市的监测站点
if(c1 == city.get()):
sitelist.append(data.ix[n, 1])
n += 1
sitemake() #生成测站点按钮
rbSite() #显示PM2.5数值
def rbSite(): #单击监测站按钮后的处理函数
n = 0
for s in data.ix[:,1]: #逐一取得监测站点
if(s == site.get()): #如果某监测站点名称与选中的监测站点相同,则
pm = data.ix[n][ "PM2.5浓度"] #取得该站点的PM2.5数值
print(pm)
pm=pm[:-5] #去除数据后面的5位单位字符
pm=int(pm) #把PM2.5的字符型数据转为整型
if(pd.isnull(pm)): #如果没有数据,则
result1.set(s + "站的 PM2.5 值当前无数据!") #显示无数据
else: #如果有数据,则
if(pm <= 35): #转换为空气质量等级
grade1 = "优秀"
elif(pm <= 53):
grade1 = "良好"
elif(pm <= 70):
grade1 = "中等"
else:
grade1 = "差"
result1.set(s + "站的 PM2.5 值为" + str(pm) + ";" + grade1 )
break #找到选中的监测站点的数据后就跳出循环
n += 1
def clickRefresh(): #重新读取数据
global data
df = pd.read_html("http://www.86pm25.com/city/beijing.html")
data=df[0]
rbSite() #更新监测站点的数据
def sitemake(): #建立监测站点按钮
global sitelist, listradio
for c1 in sitelist: #逐一建立按钮
rbtem = tk.Radiobutton(frame2, text=c1, variable=site, value=c1, command=rbSite) #建立单选按钮
listradio.append(rbtem) #插入至按钮列表
if(c1==sitelist[0]): #默认选取第1个按钮
rbtem.select()
rbtem.pack(side="left") #靠左对齐
import tkinter as tk
import pandas as pd
df = pd.read_html("http://www.86pm25.com/city/beijing.html")
data=df[0]
win=tk.Tk()
win.geometry("640x270")
win.title("PM2.5 实时监测")
city = tk.StringVar() #区县名称变量
site = tk.StringVar() #监测站点名称变量
result1 = tk.StringVar() #显示信息变量
citylist = [] #区县列表
sitelist = [] #监测站点列表
listradio = [] #区县按钮列表
#建立区县列表
for c1 in data["监测站点"]:
if(c1 not in citylist): #如果列表中不存在该县区就将该县区名称插入列表
citylist.append(c1)
#建立第1个区县的监测站点列表
count = 0
for c1 in data["监测站点"]:
if(c1 == citylist[0]): #如果是第1个区县,则
sitelist.append(data.ix[count, 1]) #把该区县的所有监测站点插入到监测站点列表
count += 1
label1 = tk.Label(win, text="区县:", pady=6, fg="blue", font=("新细明体", 12))
label1.pack()
frame1 = tk.Frame(win) #区县容器
frame1.pack()
for i in range(0,2): #按钮分2行
for j in range(0,8): #每行8个
n = i * 8 + j #第n个按钮
if(n < len(citylist)):
city1 = citylist[n] #取得区县名称
rbtem = tk.Radiobutton(frame1, text=city1, variable=city, value=city1, command=rbCity) #建立单选按钮
rbtem.grid(row=i, column=j) #设置按钮的位置
if(n==0): #选取第1个区县
rbtem.select()
label2 = tk.Label(win, text="监测站点:", pady=6, fg="blue", font=("新细明体", 12))
label2.pack()
frame2 = tk.Frame(win) #监测站点容器
frame2.pack()
sitemake()
btnDown = tk.Button(win, text="更新数据", font=("新细明体", 12), command=clickRefresh)
btnDown.pack(pady=6)
lblResult1 = tk.Label(win, textvariable=result1, fg="red", font=("新细明体", 16))
lblResult1.pack(pady=6)
rbSite() #显示测站讯息
win.mainloop()
def rbCity(): #點選縣市選項按鈕後處理函式
global sitelist, listradio
sitelist.clear() #清除原有測站串列
for r in listradio: #移除原有測站選項按鈕
r.destroy()
n=0
for c1 in data["County"] == city.get(): #逐一取出選取縣市的測站
if(c1 == True):
sitelist.append(data.ix[n, 0])
n += 1
sitemake() #建立測站選項按鈕
rbSite() #顯示PM2.5訊息
def rbSite(): #點選測站選項按鈕後處理函式
n = 0
for s in data.ix[:, 0]: #逐一取得測站
if(s == site.get()): #取得點選的測站
pm = data.ix[n, "PM2.5"] #取得PM2.5的值
if(pd.isnull(pm)): #如果沒有資料
result1.set(s + "站的 PM2.5 值目前無資料!")
else: #如果有資料
if(pm <= 35): #轉換為等級
grade1 = "低"
elif(pm <= 53):
grade1 = "中"
elif(pm <= 70):
grade1 = "高"
else:
grade1 = "非常高"
result1.set(s + "站的 PM2.5 值為「" + str(pm) + "」:「" + grade1 + "」等級")
break #找到點選測站就離開迴圈
n += 1
def clickRefresh(): #重新讀取資料
global data
# data = pd.read_csv("http://opendata.epa.gov.tw/ws/Data/REWXQA/?$orderby=SiteName&$skip=0&$top=1000&format=csv")
data = pd.read_csv("F:\\pythonBase\\pythonex\\ch09\\AQX_20160927145712.csv")
rbSite() #更新測站資料
def sitemake(): #建立測站選項按鈕
global sitelist, listradio
for c1 in sitelist: #逐一建立選項按鈕
rbtem = tk.Radiobutton(frame2, text=c1, variable=site, value=c1, command=rbSite) #建立選項按鈕
listradio.append(rbtem) #加入選項按鈕串列
if(c1==sitelist[0]): #預設選取第1個項目
rbtem.select()
rbtem.pack(side="left") #靠左排列
import tkinter as tk
import pandas as pd
# data = pd.read_csv("http://opendata.epa.gov.tw/ws/Data/REWXQA/?$orderby=SiteName&$skip=0&$top=1000&format=csv")
data = pd.read_csv("F:\\pythonBase\\pythonex\\ch09\\AQX_20160927145712.csv")
win=tk.Tk()
win.geometry("640x270")
win.title("PM2.5 實時監測")
city = tk.StringVar() #縣市文字變數
site = tk.StringVar() #測站文字變數
result1 = tk.StringVar() #訊息文字變數
citylist = [] #縣市串列
sitelist = [] #鄉鎮串列
listradio = [] #鄉鎮選項按鈕串列
#建立縣市串列
for c1 in data["County"]:
if(c1 not in citylist): #如果串列中無該縣市就將其加入
citylist.append(c1)
#建立第1個縣市的測站串列
count = 0
for c1 in data["County"]:
if(c1 == citylist[0]): #是第1個縣市的測站
sitelist.append(data.ix[count, 0])
count += 1
label1 = tk.Label(win, text="縣市:", pady=6, fg="blue", font=("新細明體", 12))
label1.pack()
frame1 = tk.Frame(win) #縣市容器
frame1.pack()
for i in range(0,3): #3列選項按鈕
for j in range(0,8): #每列8個選項按鈕
n = i * 8 + j #第n個選項按鈕
if(n < len(citylist)):
city1 = citylist[n] #取得縣市名稱
rbtem = tk.Radiobutton(frame1, text=city1, variable=city, value=city1, command=rbCity) #建立選項按鈕
rbtem.grid(row=i, column=j) #設定選項按鈕位置
if(n==0): #選取第1個縣市
rbtem.select()
label2 = tk.Label(win, text="測站:", pady=6, fg="blue", font=("新細明體", 12))
label2.pack()
frame2 = tk.Frame(win) #測站容器
frame2.pack()
sitemake()
btnDown = tk.Button(win, text="更新資料", font=("新細明體", 12), command=clickRefresh)
btnDown.pack(pady=6)
lblResult1 = tk.Label(win, textvariable=result1, fg="red", font=("新細明體", 16))
lblResult1.pack(pady=6)
rbSite() #顯示測站訊息
win.mainloop()
吴裕雄 实战PYTHON编程(8)的更多相关文章
- 吴裕雄 实战PYTHON编程(10)
import cv2 cv2.namedWindow("frame")cap = cv2.VideoCapture(0)while(cap.isOpened()): ret, im ...
- 吴裕雄 实战PYTHON编程(9)
import cv2 cv2.namedWindow("ShowImage1")cv2.namedWindow("ShowImage2")image1 = cv ...
- 吴裕雄 实战PYTHON编程(7)
import os from win32com import client word = client.gencache.EnsureDispatch('Word.Application')word. ...
- 吴裕雄 实战PYTHON编程(6)
import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['Simhei']plt.rcParams['axes.unicode ...
- 吴裕雄 实战PYTHON编程(5)
text = '中华'print(type(text))#<class 'str'>text1 = text.encode('gbk')print(type(text1))#<cla ...
- 吴裕雄 实战PYTHON编程(4)
import hashlib md5 = hashlib.md5()md5.update(b'Test String')print(md5.hexdigest()) import hashlib md ...
- 吴裕雄 实战python编程(3)
import requests from bs4 import BeautifulSoup url = 'http://www.baidu.com'html = requests.get(url)sp ...
- 吴裕雄 实战python编程(2)
from urllib.parse import urlparse url = 'http://www.pm25x.com/city/beijing.htm'o = urlparse(url)prin ...
- 吴裕雄 实战python编程(1)
import sqlite3 conn = sqlite3.connect('E:\\test.sqlite') # 建立数据库联接cursor = conn.cursor() # 建立 cursor ...
随机推荐
- Extjs Column布局常见问题及解决方法
原文地址:http://blog.csdn.net/weoln/article/details/4339533 第一次用Extjs的column布局时遇见了很多问题,记录下来,供大家参考.column ...
- bzoj2458 最小三角形
Description Xaviera现在遇到了一个有趣的问题.平面上有N个点,Xaviera想找出周长最小的三角形.由于点非常多,分布也非常乱,所以Xaviera想请你来解决这个问题.为了减小问题的 ...
- cpu监控之二:dstat
首先我们使用dstat命令来查看下我们的CPU情况,他能够实时的输出我们的信息, dstat 2 10(每2秒采集一次共采集10次) [test@test pos-gateway]$ dstat Yo ...
- $.meta ? $.extend({}, opts, $this.data()) : opts 是什么
问:$.meta ? $.extend({}, opts, $this.data()) : opts 是什么 答:这应该是一个jQuery扩展插件中的代码,其中运用了三目运算符,以及jQuery的ex ...
- mongo获取lbs数据
进入mongo目录执行./mongo 命令 #切换数据库use coachloc db.runCommand({geoNear : "coachloc" ,near : [113. ...
- [UE4]创建对象的的几种姿势(C++)
DEMO源代码 这个DEMO演示了在C++代码中,创建UE4的常见类型的对象,包括Actor,ActorComponent,加载资源等. 源代码请从这里下载:https://code.csdn.net ...
- IntelliJ IDEA小问题解决方法------(持续更新)
1:IDEA运行时报错提示“找不到或无法加载主类”:在确保IDEA开发环境无误后->file->invalidate Cache/restart,之后再重新build.问题解决. 2.如何 ...
- matlab下将图片序列转化为视频文件 && 将为视频文件转化图片序列
将图片序列转化为视频文件 程序如下: framesPath = 'E:\img\';%图像序列所在路径,同时要保证图像大小相同 videoName = 'Bolt.avi';%表示将要创建的视频文件的 ...
- Dependency Injection in ASP.NET Web API 2 Using Unity
What is Dependency Injection? A dependency is any object that another object requires. For example, ...
- sqoop产生背景及概述
sqoop产生背景 多数是用Hadoop技术处理大数据业务的企业有大量的数据存储在传统的关系型数据库(RDBMS)中:由于缺乏工具的支持.对Hadoop和传统数据库系统中的数据进行相互传输是一件十分困 ...