Description

windy在有向图中迷路了。 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1。 现在给出该有向图,你能告诉windy总共有多少种不同的路径吗? 注意:windy不能在某个节点逗留,且通过某有向边的时间严格为给定的时间。

Input

第一行包含两个整数,N T。 接下来有 N 行,每行一个长度为 N 的字符串。 第i行第j列为'0'表示从节点i到节点j没有边。 为'1'到'9'表示从节点i到节点j需要耗费的时间。

Output

包含一个整数,可能的路径数,这个数可能很大,只需输出这个数除以2009的余数。

Sample Input

【输入样例一】
2 2
11
00

【输入样例二】
5 30
12045
07105
47805
12024
12345

Sample Output

【输出样例一】
1

【样例解释一】
0->0->1

【输出样例二】
852

HINT

30%的数据,满足 2 <= N <= 5 ; 1 <= T <= 30 。 100%的数据,满足 2 <= N <= 10 ; 1 <= T <= 1000000000 。

Solution

矩阵快速幂

一开始看到以为还是板子...不过发现这题是有边权的。后来在hjw大佬的点醒下发现可以拆点

然后套板子就行了

新姿势++

#include <bits/stdc++.h>

#define ll long long
#define inf 0x3f3f3f3f
#define il inline namespace io { #define in(a) a=read()
#define out(a) write(a)
#define outn(a) out(a),putchar('\n') #define I_int int
inline I_int read() {
I_int x = , f = ; char c = getchar() ;
while( c < '' || c > '' ) { if( c == '-' ) f = - ; c = getchar() ; }
while( c >= '' && c <= '' ) { x = x * + c - '' ; c = getchar() ; }
return x * f ;
}
char F[ ] ;
inline void write( I_int x ) {
I_int tmp = x > ? x : -x ;
if( x < ) putchar( '-' ) ;
int cnt = ;
while( tmp > ) {
F[ cnt ++ ] = tmp % + '' ;
tmp /= ;
}
while( cnt > ) putchar( F[ -- cnt ] ) ;
}
#undef I_int }
using namespace io ; using namespace std ; #define N 500
const int mod = ; int n = read() , T = read() ;
struct matrix {
int m[ N ][ N ] ;
matrix() { memset( m , , sizeof( m ) ) ; }
int *operator[] ( int a ) { return m[ a ] ; }
matrix operator * ( matrix &x ) {
matrix ans ;
memset( ans.m , , sizeof( ans.m ) ) ;
for( int i = ; i <= n ; i ++ ) {
for( int j = ; j <= n ; j ++ ) {
for( int k = ; k <= n ; k ++ ) {
ans[ i ][ j ] = ( ans[ i ][ j ] + m[ i ][ k ] * x[ k ][ j ] % mod ) % mod ;
}
}
}
return ans ;
}
} a ; matrix power( matrix a , int b ) {
matrix ans , base = a ;
memset( ans.m , , sizeof( ans.m ) ) ;
for( int i = ; i <= n ; i ++ )
ans[ i ][ i ] = ;
while( b ) {
if( b & ) ans = ans * base ;
base = base * base ;
b >>= ;
}
return ans ;
} char ch[ ] ; int main() {
for( int i = ; i <= n ; i ++ ) {
scanf( "%s" , ch+ ) ;
for( int j = ; j <= n ; j ++ ) {
if( ch[ j ] > '' ) {
a[ * ( i - ) + (ch[ j ] - '' ) ][ * ( j - ) + ] = ;
}
}
}
for( int i = ; i <= n ; i ++ ) {
for( int j = ; j < ; j ++ ) {
a[ * ( i - ) + j ][ * ( i - ) + j + ] = ;
}
}
n *= ; //puts("233");
matrix ans = power( a , T ) ;
printf( "%d\n" , ans[ ][ n - ] ) ;
}

BZOJ1297: [SCOI2009]迷路 矩阵快速幂的更多相关文章

  1. BZOJ 1297: [SCOI2009]迷路 [矩阵快速幂]

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  2. Luogu P4159 [SCOI2009]迷路 矩阵快速幂+精巧转化

    大致就是矩阵快速幂吧.. 这个时候会发现这些边权$\le 9$,然后瞬间想到上回一道题:是不是可以建一堆转移矩阵再建一个$lcm(1,2,3,4,5,6,7,8,9)$的矩阵?...后来发现十分的慢q ...

  3. [SCOI2009]迷路(矩阵快速幂) 题解

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  4. BZOJ 1297 迷路(矩阵快速幂)

    很容易想到记忆化搜索的算法. 令dp[n][T]为到达n点时时间为T的路径条数.则dp[n][T]=sigma(dp[i][T-G[i][n]]); 但是空间复杂度为O(n*T),时间复杂度O(n*n ...

  5. BZOJ1297 [SCOI2009]迷路 矩阵乘法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1297 题意概括 有向图有 N 个节点,从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. ...

  6. bzoj1297: [SCOI2009]迷路(矩阵乘法+拆点)

    题目大意:有向图里10个点,点与点之间距离不超过9,问从1刚好走过T距离到达n的方案数. 当时看到这题就想到了某道奶牛题(戳我).这两道题的区别就是奶牛题问的是走T条边,这道题是每条边都有一个边权求走 ...

  7. 【BZOJ1297】[SCOI2009]迷路(矩阵快速幂)

    [BZOJ1297][SCOI2009]迷路(矩阵快速幂) 题面 BZOJ 洛谷 题解 因为边权最大为\(9\),所以记录往前记录\(9\)个单位时间前的.到达每个点的方案数就好了,那么矩阵大小就是\ ...

  8. 【矩阵快速幂】bzoj1297 [SCOI2009]迷路

    1297: [SCOI2009]迷路 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1407  Solved: 1007[Submit][Status ...

  9. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

随机推荐

  1. Redis主从同步及哨兵原理

    1.复制过程 复制过程大致分为6个过程: 流程图如下: 1)保存主节点信息 执行slaveof后从节点只保存主节点的地址信息便直接返回,这时建立复制流程还没有开始,在从节点执行info replica ...

  2. Windows五种IO模型性能分析和Linux五种IO模型性能分析

    Windows五种IO模型性能分析和Linux五种IO模型性能分析 http://blog.csdn.net/jay900323/article/details/18141217 http://blo ...

  3. android 代码edittext删除或者替换光标处的字串

    https://stackoverflow.com/questions/3609174/android-insert-text-into-edittext-at-current-position Cp ...

  4. vertx连接mysql数据库

    1:创建一个verticle组件 package jdbcConnection; import io.vertx.core.AbstractVerticle; import io.vertx.core ...

  5. hdu1864最大报销额(01背包)

    http://acm.sdut.edu.cn:8080/vjudge/contest/view.action?cid=187#problem/G 该题要注意的就是每张单子A种类的总和不能大与600,同 ...

  6. [LeetCode] 513. Find Bottom Left Tree Value_ Medium tag: BFS

    Given a binary tree, find the leftmost value in the last row of the tree. Example 1: Input: 2 / \ 1 ...

  7. cmd 笔记(随时补充)

    被一篇破解WIFI的标题文骗到了,所以学习一下CMD的命令 1 查看已经连接的wifi和密码 netsh wlan show profiles 回车 netsh wlan show profiles ...

  8. Java缓存学习之五:spring 对缓存的支持

    (注意标题,Spring对缓存的支持 这里不单单指Ehcache ) 从3.1开始,Spring引入了对Cache的支持.其使用方法和原理都类似于Spring对事务管理的支持.Spring Cache ...

  9. linux基础命令---tmpwatch

    tmpwatch 删除最近一段时间没有访问的文件,时间以小时为单位,节省磁盘空间.tmpwatch递归删除给定时间未被访问的文件.通常,它用于清理用于临时保存空间(如/tmp)的目录.当更改目录时,t ...

  10. 自动化持续集成Jenkins

    自动化持续集成Jenkins 使用Jenkins配置自动化构建http://blog.csdn.net/littlechang/article/details/8642149 Jenkins入门总结h ...