整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html

简介

Eigen是C++中可以用来调用并进行矩阵计算的一个库,简单了说它就是一个c++版本的matlab包。

安装

下载eigen:http://eigen.tuxfamily.org/index.php?title=Main_Page#Download

Eigen只包含头文件,因此它不需要实现编译,只需要你include到你的项目,指定好Eigen的头文件路径,编译项目即可。而且跨平台,当然这是必须的。

方案一

下载后,解压得到文件夹中,Eigen子文件夹便是我们需要的全部;如果你想使用Eigen暂不支持的特性,可以使用unsupported子文件夹。可以把Eigen/unsupported复制到任何你需要的地方。

方案二 安装改包,其实就是把Eigen/unsupported的内容复制到“/usr/local/include/eigen3”下。在解压的文件夹下,新建build_dir,执行。

  cd build_dir
cmake ../
make install

详见INSTALL文件即可。

模块和头文件

Eigen库被分为一个Core模块和其他一些模块,每个模块有一些相应的头文件。 为了便于引用,Dense模块整合了一系列模块;Eigen模块整合了所有模块。一般情况下,include<Eigen/Dense> 就够了。

Module Header file Contents
Core #include<Eigen/Core> Matrix和Array类,基础的线性代数运算和数组操作
Geometry #include<Eigen/Geometry> 旋转、平移、缩放、2维和3维的各种变换
LU #include<Eigen/LU> 求逆,行列式,LU分解
Cholesky #include <Eigen/Cholesky> LLT和LDLT Cholesky分解
Householder #include<Eigen/Householder> 豪斯霍尔德变换,用于线性代数运算
SVD #include<Eigen/SVD> SVD分解
QR #include<Eigen/QR> QR分解
Eigenvalues #include<Eigen/Eigenvalues> 特征值,特征向量分解
Sparse #include<Eigen/Sparse> 稀疏矩阵的存储和一些基本的线性运算
稠密矩阵 #include<Eigen/Dense> 包含了Core/Geometry/LU/Cholesky/SVD/QR/Eigenvalues模块
矩阵 #include<Eigen/Eigen> 包括Dense和Sparse(整合库)

一个简单的例子

#include <iostream>
#include <Eigen/Dense>
using Eigen::MatrixXd;
int main()
{
MatrixXd m(2,2);
m(0,0) = 3;
m(1,0) = 2.5;
m(0,1) = -1;
m(1,1) = m(1,0) + m(0,1);
std::cout << m << std::endl;
}

编译并执行:g++ main.cpp -I /usr/local/include/eigen3/ -o maincpp

 3  -1
2.5 1.5

Eigen头文件定义了许多类型,所有的类型都在Eigen的命名空间内。MatrixXd代表的是任意大小(X*X)的矩阵,并且每个元素为double类型。

例2: 矩阵和向量

再看另一个例子

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{
MatrixXd m = MatrixXd::Random(3,3);
m = (m + MatrixXd::Constant(3,3,1.2)) * 50;
cout << "m =" << endl << m << endl;
VectorXd v(3);
v << 1, 2, 3;
cout << "m * v =" << endl << m * v << endl;
}

输出为:


m =
94 89.8 43.5
49.4 101 86.8
88.3 29.8 37.8
m * v =
404
512
261

程序中定义了一个任意大小的矩阵,并用33的随机阵初始化。MatrixXd::Constant创建一个33的常量矩阵。

VectorXd表示列向量,并用逗号初始化语法来初始化。

在看同样功能的代码

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{
Matrix3d m = Matrix3d::Random();
m = (m + Matrix3d::Constant(1.2)) * 50;
cout << "m =" << endl << m << endl;
Vector3d v(1,2,3); cout << "m * v =" << endl << m * v << endl;
}

MatrixXd表示是任意尺寸的矩阵,Matrix3d直接指定了3*3的大小。Vector3d也被直接初始化为[1,2,3]'的列向量。

使用固定大小的矩阵或向量有两个好处:编译更快;指定大小可以进行更为严格的检查。当然使用太多类别(Matrix3d、Matrix4d、Matrix5d...)会增加编译时间和可执行文件大小,原则建议使用4及以内的。

Eigen教程(1)的更多相关文章

  1. Eigen教程(7)

    整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html 归约.迭代器和广播 归约 在Eigen中,有些函数可以统计matrix/array的 ...

  2. Eigen教程(6)

    整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html 高级初始化方法 本篇介绍几种高级的矩阵初始化方法,重点介绍逗号初始化和特殊矩阵(单位 ...

  3. Eigen教程(11)

    整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html 存储顺序 对于矩阵和二维数组有两种存储方式,列优先和行优先. 假设矩阵: 按行优先存 ...

  4. Eigen教程(9)

    整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html Eigen并没有为matrix提供直接的Reshape和Slicing的API,但是 ...

  5. Eigen教程(10)

    整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html 混淆 在Eigen中,当变量同时出现在左值和右值,赋值操作可能会带来混淆问题.这一篇 ...

  6. Eigen教程(8)

    整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html 原生缓存的接口:Map类 这篇将解释Eigen如何与原生raw C/C++ 数组混合 ...

  7. Eigen教程(5)

    整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html 块操作 块是matrix或array中的矩形子部分. 使用块 函数.block(), ...

  8. Eigen教程(4)

    整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html Array类和元素级操作 为什么使用Array 相对于Matrix提供的线性代数运算 ...

  9. Eigen教程(3)

    整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html 矩阵和向量的运算 提供一些概述和细节:关于矩阵.向量以及标量的运算. 介绍 Eige ...

  10. Eigen教程(2)

    整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html Matrix类 在Eigen,所有的矩阵和向量都是Matrix模板类的对象,Vect ...

随机推荐

  1. php,perl计算crc

    PHP版: <?php echo getCrc32("/var/www/html/resource/koc_data/2013_03/01/1ck65e.koc") ; # ...

  2. 如何学好C、C++语言

    如何学好C语言 有人在酷壳的留言版上询问下面的问题 keep_walker : 今天晚上我看到这篇文章. http://programmers.stackexchange.com/questions/ ...

  3. python字符串格式化之学习笔记

    在python中格式化输出字符串使用的是%运算符,通用的形式为 •格式标记字符串 % 要输出的值组其中,左边部分的”格式标记字符串“可以完全和c中的一致.右边的'值组'如果有两个及以上的值则需要用小括 ...

  4. [转]springSecurity源码分析—DelegatingFilterProxy类的作用

    使用过springSecurity的朋友都知道,首先需要在web.xml进行以下配置, <filter>  <filter-name>springSecurityFilterC ...

  5. Java – How to convert a primitive Array to List

    Java – How to convert a primitive Array to ListCode snippets to convert a primitive array int[] to a ...

  6. IntelliJ IDEA - 热部署插件JRebel ,对静态资源文件进行热部署?javascript、css、vm文件

    IntelliJ IDEA - 热部署插件JRebel ,对静态资源文件进行热部署?javascript.css.vm文件https://blog.csdn.net/feng_pump/article ...

  7. kafak manager + zookeeper + kafka 消费队列快速清除

    做性能测试时,kafka消息队列比较长,让程序自己消费完毕需要等待很长时间.就需要快速清理kafka队列 清理方式把 这kafak manager + zookeeper + kafka 这些应用情况 ...

  8. 发一些靠谱的招聘网站(含ios)

    近日整理一些 招聘网站 , 欢迎大家 推荐 http://www.zhaopin.com 智联,貌似这货上市了.. http://www.51job.com   51job  还行 大街就不提了.0. ...

  9. SPI和RAM IP核

    学习目的: (1) 熟悉SPI接口和它的读写时序: (2) 复习Verilog仿真语句中的$readmemb命令和$display命令: (3) 掌握SPI接口写时序操作的硬件语言描述流程(本例仅以写 ...

  10. Oracle Time Model Statistics(时间模型统计)

    Oracle数据库从10g開始,启用以时间模型统计为主.命中率为辅等性能度量指标.基于时间模型统计,主要是基于操作类型測量在数据库中花费的时间的统计信息.最重要的时间模型统计是数据库时间.或DB时间. ...