MySQL查询性能优化---高性能(二)
转载地址:https://segmentfault.com/a/1190000011330649
避免向数据库请求不需要的数据
在访问数据库时,应该只请求需要的行和列。请求多余的行和列会消耗MySql服务器的CPU和内存资源,并增加网络开销。
例如在处理分页时,应该使用LIMIT限制MySql只返回一页的数据,而不是向应用程序返回全部数据后,再由应用程序过滤不需要的行。
当一行数据被多次使用时可以考虑将数据行缓存起来,避免每次使用都要到MySql查询。
避免使用SELECT *这种方式进行查询,应该只返回需要的列。
查询数据的方式
查询数据的方式有全表扫描、索引扫描、范围扫描、唯一索引查询、常数引用等。这些查询方式,速度从慢到快,扫描的行数也是从多到少。可以通过EXPLAIN语句中的type列反应查询采用的是哪种方式。
通常可以通过添加合适的索引改善查询数据的方式,使其尽可能减少扫描的数据行,加快查询速度。
例如,当发现查询需要扫描大量的数据行但只返回少数的行,那么可以考虑使用覆盖索引,即把所有需要用到的列都放到索引中。这样存储引擎无须回表获取对应行就可以返回结果了。
分解大的查询
可以将一个大查询切分成多个小查询执行,每个小查询只完成整个查询任务的一小部分,每次只返回一小部分结果
删除旧的数据是一个很好的例子。如果只用一条语句一次性执行一个大的删除操作,则可能需要一次锁住很多数据,占满整个事务日志,耗尽系统资源、阻塞很多小的但重要的查询。将一个大的删除操作分解成多个较小的删除操作可以将服务器上原本一次性的压力分散到多次操作上,尽可能小地影响MySql性能,减少删除时锁的等待时间。同时也减少了MySql主从复制的延迟。
另一个例子是分解关联查询,即对每个要关联的表进行单表查询,然后将结果在应用程序中进行关联。下面的这个查询:
SELECT * FROM tag
JOIN tag_post ON tag_post.tag_id=tag.id
JOIN post ON tag_post.post_id=post.id
WHERE tag.tag = 'mysql';
可以分解成下面这些查询来代替:
SELECT * FROM tag WHERE tag = 'mysql';
SELECT * FROM tag_post WHERE tag_id = 1234;
SELECT * FROM post WHERE post.id in (123,456,567,9098,8904);
将一个关联查询拆解成多个单表查询有如下有点:
- 让缓存的效率更高。如果缓存的是关联查询的结果,那么其中的一个表发生变化,整个缓存就失效了。而拆分后,如果只是某个表很少的改动,并不会破坏所有的缓存。
- 可以减少锁的竞争
- 更容易对数据库进行拆分,更容易做到高性能和可扩展。
- 查询本身的效率也有可能会有所提升。例如上面用IN()代替关联查询比随机的关联更加高效。
优化MIN()和MAX()
添加索引可以优化MIN()和MAX()表达式。例如,要找到某一列的最小值,只需要查询对应B-Tree索引的最左端的记录即可。类似的,如果要查询列中的最大值,也只需要读取B-Tree索引的最后一条记录。对于这种查询,EXPLAIN中可以看到"Select tables optimized away",表示优化器已经从执行计划中移除了该表,并以一个常数取而代之。
用IN()取代OR
在MySql中,IN()先将自己列表中的数据进行排序,然后通过二分查找的方式确定列的值是否在IN()的列表中,这个时间复杂度是O(logn)。如果换成OR操作,则时间复杂度是O(n)。所以,对于IN()的列表中有大量取值的时候,用IN()替换OR操作将会更快。
优化关联查询
在MySql中,任何一个查询都可以看成是一个关联查询,即使只有一个表的查询也是如此。
MySql对任何关联都执行嵌套循环的关联操作,例如对于下面的SQL语句:
SELECT tbl1.col1,tbl2.col2
FROM tbl1 INNER JOIN tbl2 USING(col3)
WHERE tbl1.col1 IN(5,6);
下面的伪代码表示MySql将如何执行这个查询:
//先从第一个表中取出符合条件的所有行
out_iter = iterator over tbl1 where col1 IN(5,6)
outer_row = out_iter.next
//在while循环中遍历第一个表结果集的每一行
while outer_row
//对于第一个表结果集中的每一行,在第二个表中找出符合条件的所有行
inner_iter = iterator over tbl2 where col3 = outer_row.col3
inner_row = inner_iter.next
while inner_row
//将第一个表的结果列和第二个表的结果列拼装在一起作为结果输出
output[outer_row.col1, inner_row.col2]
inner_row = inner_iter.next
end
//回溯,再根据第一个表结果集的下一行,继续上面的过程
outer_row = outer_iter.next
end
对于单表查询,那么只需要完成上面外层的基本操作。
优化关联查询,要确保ON或者USING子句中的列上有索引,并且在建立索引时需要考虑到关联的顺序。通常来说,只需要在关联顺序中的第二个表的相应列上创建索引。例如,当表A和表B用列c关联的时候,假设关联的顺序是B、A,那么就不需要在B表的c列上建立索引。没有用到的索引只会带来额外的负担。
此外,确保任何的GROUP BY和ORDER BY中的表达式只涉及到一个表中的列,这样才能使用索引来优化这个过程。
临时表的概念
上面提到在MySql中,任何一个查询实质上都是一个关联查询。那么对于子查询或UNION查询是如何实现关联操作的呢。
对于UNION查询,MySql先将每一个单表查询结果放到一个临时表中,然后再重新读出临时表数据来完成UNION查询。MySql读取结果临时表和普通表一样,也是采用的关联方式。
当遇到子查询时,先执行子查询并将结果放到一个临时表中,然后再将这个临时表当做一个普通表对待。
MySql的临时表是没有任何索引的,在编写复杂的子查询和关联查询的时候需要注意这一点。
临时表也叫派生表。
排序优化
应该尽量让MySql使用索引进行排序。当不能使用索引生成排序结果的时候,MySql需要自己进行排序。如果数据量小于“排序缓冲区”的大小,则MySql使用内存进行“快速排序”操作。如果数据量太大超过“排序缓冲区”的大小,那么MySql只能采用文件排序,而文件排序的算法非常复杂,会消耗很多资源。
无论如何排序都是一个成本很高的操作,所以从性能角度考虑,应尽可能避免排序。所以让MySql根据索引构造排序结果非常的重要。
子查询优化
MySql的子查询实现的非常糟糕。最糟糕的一类查询是WHERE条件中包含IN()的子查询语句。
应该尽可能用关联替换子查询,可以提高查询效率。
优化COUNT()查询
COUNT()有两个不同的作用:
- 统计某个列值的数量,即统计某列值不为NULL的个数。
- 统计行数。
当使用COUNT(*)时,统计的是行数,它会忽略所有的列而直接统计所有的行数。而在括号中指定了一个列的话,则统计的是这个列上值不为NULL的个数。
可以考虑使用索引覆盖扫描或增加汇总表对COUNT()进行优化。
优化LIMIT分页
处理分页会使用到LIMIT,当翻页到非常靠后的页面的时候,偏移量会非常大,这时LIMIT的效率会非常差。例如对于LIMIT 10000,20这样的查询,MySql需要查询10020条记录,将前面10000条记录抛弃,只返回最后的20条。这样的代价非常高,如果所有的页面被访问的频率都相同,那么这样的查询平均需要访问半个表的数据。
优化此类分页查询的一个最简单的办法就是尽可能地使用索引覆盖扫描,而不是查询所有的列。然后根据需要与原表做一次关联操作返回所需的列。对于偏移量很大的时候,这样的效率会提升非常大。考虑下面的查询:
SELECT film_id, description FROM sakila.film ORDER BY title LIMIT 50, 5;
如果这个表非常大,那么这个查询最好改写成下面的这样子:
SELECT film.film_id, film.description FROM sakila.film
INNER JOIN
(SELECT film_id FROM sakila.film ORDER BY title LIMIT 50,5) AS lim
USING(film_id);
注意优化中关联的子查询,因为只查询film_id一个列,数据量小,使得一个内存页可以容纳更多的数据,这让MySQL扫描尽可能少的页面。在获取到所需要的所有行之后再与原表进行关联以获得需要的全部列。
LIMIT的优化问题,其实是OFFSET的问题,它会导致MySql扫描大量不需要的行然后再抛弃掉。可以借助书签的思想记录上次取数据的位置,那么下次就可以直接从该书签记录的位置开始扫描,这样就避免了使用OFFSET。可以把主键当做书签使用,例如下面的查询:
SELECT * FROM sakila.rental ORDER BY rental_id DESC LIMIT 20;
假设上面的查询返回的是主键为16049到16030的租借记录,那么下一页查询就可以直接从16030这个点开始:
SELECT * FROM sakila.rental WHERE rental_id < 16030
ORDER BY rental_id DESC LIMIT 20;
该技术的好处是无论翻页到多么后面,其性能都会很好。
此外,也可以用关联到一个冗余表的方式提高LIMIT的性能,冗余表只包含主键列和需要做排序的数据列。
优化UNION查询
除非确实需要服务器消除重复的行,否则一定要使用UNION ALL。如果没有ALL关键字,MySql会给临时表加上DISTINCT选项,这会导致对整个临时表的数据做唯一性检查。这样做的代价非常高。
MySQL查询性能优化---高性能(二)的更多相关文章
- MySQL查询性能优化(精)
MySQL查询性能优化 MySQL查询性能的优化涉及多个方面,其中包括库表结构.建立合理的索引.设计合理的查询.库表结构包括如何设计表之间的关联.表字段的数据类型等.这需要依据具体的场景进行设计.如下 ...
- 170727、MySQL查询性能优化
MySQL查询性能优化 MySQL查询性能的优化涉及多个方面,其中包括库表结构.建立合理的索引.设计合理的查询.库表结构包括如何设计表之间的关联.表字段的数据类型等.这需要依据具体的场景进行设计.如下 ...
- MySQL查询性能优化七种武器之索引下推
前面已经讲了MySQL的其他查询性能优化方式,没看过可以去了解一下: MySQL查询性能优化七种武器之索引潜水 MySQL查询性能优化七种武器之链路追踪 今天要讲的是MySQL的另一种查询性能优化方式 ...
- 到底该不该使用存储过程 MySQL查询性能优化一则
到底该不该使用存储过程 看到<阿里巴巴java编码规范>有这样一条 关于这条规范,我说说我个人的看法 用不用存储过程要视所使用的数据库和业务场景而定的,不能因为阿里巴巴的技术牛逼,就视 ...
- 《高性能MySQL》之MySQL查询性能优化
为什么查询会慢? 响应时间过长.如果把查询看做是一个任务,那么它由一系列子任务组成,每个子任务都会消耗一定的时间.如果要优化查询,实际上优化其子任务,要么消除其中一些子任务,要么减少子任务的执行次数, ...
- MySQL之查询性能优化(二)
查询执行的基础 当希望MySQL能够以更高的性能运行查询时,最好的办法就是弄清楚MySQL是如何优化和执行查询的.MySQL执行一个查询的过程,根据图1-1,我们可以看到当向MySQL发送一个请求时, ...
- MySQL优化技巧之五(mysql查询性能优化)
对于高性能数据库操作,只靠设计最优的库表结构.建立最好的索引是不够的,还需要合理的设计查询.如果查询写得很糟糕,即使库表结构再合理.索引再合适,也无法实现高性能.查询优化.索引优化.库表结构优化需要齐 ...
- mysql查询性能优化
mysql查询过程: 客户端发送查询请求. 服务器检查查询缓存,如果命中缓存,则返回结果,否则,继续执行. 服务器进行sql解析,预处理,再由优化器生成执行计划. Mysql调用存储引擎API执行优化 ...
- MySQl 查询性能优化相关
0. 1.参考 提升网站访问速度的 SQL 查询优化技巧 缓存一切数据,读取内存而不是硬盘IO 如果你的服务器默认情况下没有使用MySQL查询缓存,那么你应该开启缓存.开启缓存意味着MySQL 会把所 ...
随机推荐
- 使用wireshark分析tcp/ip报文之报文头
以太网报文的结构如下: 其中,以太网的帧头: 14 Bytes:MAC目的地址48bit(6B),MAC源地址48bit(6B),Type域2B,一共14B. IP头部: TCP头部: http:// ...
- jackson 常用注解,比如忽略某些属性,驼峰和下划线互转
一般情况下使用JSON只使用了java对象与字符串的转换,但是,开发APP时候,我们经常使用实体类来做转换:这样,就需要用到注解: Jackson默认是针对get方法来生成JSON字符串的,可以使用注 ...
- ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))
数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 (・∀・)哼哼~天真 先来引入求余概念 (a + b) % p = (a% ...
- 高级版本VS打开低版本VS工程,无法调试的问题
选中Debugging选项,在Command命令行里面输入生成exe文件的相对路径. 转载:http://blog.csdn.net/x931100537/article/details/405052 ...
- Eclipse中离线安装ADT插件详细教程
在搭建Android开发环境的时候,我们需要为Eclipse安装ADT(Android Development Tools)插件,这个插件可以为用户提供一个强大的Android集成开发环境.通过给Ec ...
- windows下的gvim和emmet 下载和安装 + "omnifunc is not set" solution?
注意几个地方: 引导键是ctrl-y, 其他就是实际的操作键了, 如: n下一个插入点, N是上一个插入点(不是p), ctrl-y + i是自动为图片添加宽度和高度尺寸, 要点是要把光标移动到 im ...
- FJNUOJ Yehan’s hole(容斥求路径数 + 逆元)题解
Description Yehan is a angry grumpy rabbit, who likes jumping into the hole. This day,Yehan jumps ag ...
- UVa 1626 括号序列(矩阵连乘)
https://vjudge.net/problem/UVA-1626 题意: 输入一个由 "(" . ")" . "[" . " ...
- Linux进程内存布局(翻译)
Anatomy of a Program in Memory 在一个多任务OS中,每个进程都运行在它自己的内存沙箱中.这个沙箱就是虚拟地址空间,在32位下就是一块容量为4GB的内存地址.内核将这些虚拟 ...
- Python代码规范与命名规则
1.模块 模块尽量使用小写命名,首字母保持小写,尽量不要用下划线(除非多个单词,且数量不多的情况) # 正确的模块名 import decoder import html_parser # 不推荐的模 ...