如图3所示的训练数据集,其正实例点是(3,3),(3,4),负实例点是(1,1),试用感知机学习算法的原始形式求感知机模型,即求出w和b。这里,

图3

这里我们取初值,取。具体问题解释不写了,求解的方法就是算法1

Python代码如下:

import os
 
# An example in that book, the training set and parameters' sizes are fixed
training_set = [[(3, 3), 1], [(4, 3), 1], [(1, 1), -1]]
 
w = [0, 0]
b = 0
 
# update parameters using stochastic gradient descent
def update(item):
    global w, b
    w[0] = w[0] + 1 * item[1] * item[0][0]
    w[1] = w[1] + 1 * item[1] * item[0][1]
    b = b + 1 * item[1]
    # print w, b # you can uncomment this line to check the process of stochastic gradient descent
 
# calculate the functional distance between 'item' an the dicision surface
def cal(item):
    global w, b
    res = 0
    for i in range(len(item[0])):
        res += item[0][i] * w[i]
    res += b
    res *= item[1]
    return res
 
# check if the hyperplane can classify the examples correctly
def check():
    flag = False
    for item in training_set:
        if cal(item) <= 0:
            flag = True
            update(item)
    if not flag:
        print "RESULT: w: " + str(w) + " b: "+ str(b)
        os._exit(0)
    flag = False
 
if __name__=="__main__":
    for i in range(1000):
        check()
    print "The training_set is not linear separable. "
运行结果如下:
 

感知机-Python实现的更多相关文章

  1. 统计学习方法 | 感知机 | python实现

    感知机是二类分类的线性分类模型,利用随机梯度下降法对基于误分类的损失函数进行极小化. 书中算法可以将所有样本和系数向量写成增广向量的形式,并将所有负样本乘以-1,统一形式,方便计算. (1)训练数据集 ...

  2. Python实现PLA(感知机)

    Python实现PLA(感知机) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=>end o ...

  3. 感知机(python实现)

    感知机(perceptron)是二分类的线性分类模型,输入为实例的特征向量,输出为实例的类别(取+1和-1).感知机对应于输入空间中将实例划分为两类的分离超平面.感知机旨在求出该超平面,为求得超平面导 ...

  4. 利用Python实现一个感知机学习算法

    本文主要参考英文教材Python Machine Learning第二章.pdf文档下载链接: https://pan.baidu.com/s/1nuS07Qp 密码: gcb9. 本文主要内容包括利 ...

  5. python 实现简单的感知机

    最近在自学机器学习,记录下一些学习记录 如何用python实现一个简单的感知机 需要安装numpy库,即下面用到的np 简单的说就是 通过计算权重向量w和输入向量x的线性组合,判断该线性组合是否大于某 ...

  6. (数据科学学习手札34)多层感知机原理详解&Python与R实现

    一.简介 机器学习分为很多个领域,其中的连接主义指的就是以神经元(neuron)为基本结构的各式各样的神经网络,规范的定义是:由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系 ...

  7. 使用Python来编写一个简单的感知机

    来表示.第二个元素是表示期望输出的值. 这个数组定义例如以下: training_data = [  (array([0,0,1]), 0),  (array([0,1,1]), 1),  (arra ...

  8. python实现感知机线性分类模型

    前言 感知器是分类的线性分类模型,其中输入为实例的特征向量,输出为实例的类别,取+1或-1的值作为正类或负类.感知器对应于输入空间中对输入特征进行分类的超平面,属于判别模型. 通过梯度下降使误分类的损 ...

  9. 统计学习方法与Python实现(一)——感知机

    统计学习方法与Python实现(一)——感知机 iwehdio的博客园:https://www.cnblogs.com/iwehdio/ 1.定义 假设输入的实例的特征空间为x属于Rn的n维特征向量, ...

随机推荐

  1. POJ 3299 Humidex 难度:0

    题目链接:http://poj.org/problem?id=3299 #include <iostream> #include <iomanip> using namespa ...

  2. POJ 3274 Gold Balanced Lineup 哈希,查重 难度:3

    Farmer John's N cows (1 ≤ N ≤ 100,000) share many similarities. In fact, FJ has been able to narrow ...

  3. [开发笔记]-WindowsService服务程序开发

    Windows服务:Microsoft Windows 服务(即,以前的 NT服务)使您能够创建在它们自己的 Windows 会话中可长时间运行的可执行应用程序.这些服务可以在计算机启动时自动启动,可 ...

  4. RM报表预览,只有固定的1个订单页面

    明明选了多个记录,预览时,只显示最后一个. 原因: 主项数据的数据集选了报表自带的虚拟数据集了.

  5. 查看UI调试界面利器 revealapp

    官网 http://revealapp.com 做iOS的开发,UI是非常非常重要的一环.调试时我们一般用模拟器,提交前用真机做测试.用模拟器来调试UI效果虽然快捷方便,但有时仍然希望有更强大的工具来 ...

  6. java基础之 泛型

    泛型(Generic type 或者generics)是对 Java 语言的类型系统的一种扩展,以支持创建可以按类型进行参数化的类.可以把类型参数看作是使用参数化类型时指定的类型的一个占位符,就像方法 ...

  7. RelativeLayout相对布局中拖放控件的办法

    相对布局中拖了一个控件以后,要拖放第二个空间,死活拖不进去.仔细查看了鼠标的状况,发现要把第二个控件拖到第一个控件的周围,才能成功.果然是相对布局.

  8. 玩转渗透神器Kali:Kali Linux作为主系统使用的正确姿势TIPS

    Kali Linux 前身是著名渗透测试系统BackTrack ,是一个基于 Debian 的 Linux 发行版,包含很多安全和取证方面的相关工具. 本文假设你在新装好的kali linux环境下… ...

  9. automationOperationsWithPython

    1.psutil 系统性能信息模块,可获取系统运行的进程和系统利用率(包括CPU.内存.磁盘.网络等)信息.它主要应用于系统监控,分析和限制系统资源及进程的管理.该模块需要单独安装. 示例代码 imp ...

  10. ios工程中ARC与非ARC的混合

    ARC与非ARC在一个项目中同时使用, 1,选择项目中的Targets,选中你所要操作的Target,2,选Build Phases,在其中Complie Sources中选择需要ARC的文件双击,并 ...