【BZOJ1007】【HNOI2008】水平可见直线
依旧看黄学长代码,不过这回是看完后自己写的
原题:
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
0 < N < 50000
给线段求下凸包,还算比较简单把
用栈,首先根据斜率排个序,这里建议如果斜率相等呢么y轴上截距递减,这样如果要插入的直线斜率和栈顶斜率相等直接停止就行了
如果要插入的直线和栈中top-1的交点在栈中top和栈中top-2的交点的左边,呢么top--
为什么呐
手玩三条直线很容易看出来,图比较好画我就画一下吧(我也只能画简单的图了)
怎么计算交点呐
因为是很简单的x=kx+b,这就是小学数学,为了增加文章的篇幅来扯一扯 _(:3 」∠)_
就是解二元一次方程组,{y=k1x+b1,y=k2x+b2},下面减上面,(k2-k1)x=b1-b2,x=(b1-b2)/(k2-k1)
然后随便搞一搞就行了,最后用bool记录答案来保证id递增
小技巧:fabs是计算浮点数的绝对值,注意fabs计算的并不是差的绝对值,也就是说应该是fabs(a-b)而不是fabs(a,b),需要cmath
我看黄学长和另一个人的代码比x的时候都是直接<=,算时x返回是double啊不是不能直接=么,然而还是过了,不知道为什么
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int read(){int z=,mark=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')mark=-; ch=getchar();}
while(ch>=''&&ch<=''){z=(z<<)+(z<<)+ch-''; ch=getchar();}
return z*mark;
}
bool deng(double x,double y){ return fabs(x-y)<1e-;}//fabs传的是绝对值,所以不能fabs(a-b)
int n; struct cdd{double k,b; int id;}a[];//y=kx+b
bool compare(cdd x,cdd y){ return (deng(x.k,y.k)) ? (x.b>y.b) : (x.k<y.k);}
bool ans[];
cdd zhan[]; int top=;
double get_x(cdd x,cdd y){ return (x.b-y.b)/(y.k-x.k);}
void insert(cdd x){
if(deng(x.k,zhan[top].k)) return ;
while(top> && get_x(x,zhan[top-]) <= get_x(zhan[top],zhan[top-])) top--;
zhan[++top]=x;
}
int main(){//freopen("ddd.in","r",stdin);
memset(ans,,sizeof(ans));
cin>>n;
for(int i=;i<=n;i++) scanf("%lf%lf",&a[i].k,&a[i].b),a[i].id=i;
sort(a+,a+n+,compare);
a[].k=a[].b=-;
for(int i=;i<=n;i++) insert(a[i]);
for(int i=;i<=top;i++) ans[zhan[i].id]=true;
for(int i=;i<=n;i++)if(ans[i]) printf("%d ",i);
cout<<endl;
return ;
}
【BZOJ1007】【HNOI2008】水平可见直线的更多相关文章
- [bzoj1007][HNOI2008]水平可见直线_单调栈
水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...
- [bzoj1007][HNOI2008][水平可见直线] (斜率不等式)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
- [BZOJ1007] [HNOI2008] 水平可见直线 (凸包)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线:L1:y=x ...
- BZOJ1007: [HNOI2008]水平可见直线(单调栈)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8638 Solved: 3327[Submit][Status][Discuss] Descripti ...
- BZOJ1007:[HNOI2008]水平可见直线(计算几何)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
- bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3 ...
- [BZOJ1007](HNOI2008)水平可见直线(半平面交习题)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线: ...
- bzoj1007 [HNOI2008]水平可见直线——单调栈
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的 ...
- bzoj1007 [HNOI2008]水平可见直线 - 几何 - hzwer.com
Description Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必 ...
- bzoj1007[HNOI2008]水平可见直线
cycleke神说要用半平面交(其实他也用的凸包),把我吓了一跳,后来发现(看题解)其实可以先按斜率排序,再将最小的两条线入栈,如果其与栈顶元素的交点在上一个点的左边,则将栈顶元素出栈.这是一个开口向 ...
随机推荐
- Object Oriented Programming python
Object Oriented Programming python new concepts of the object oriented programming : class encapsula ...
- Ubuntu 13.04设置root用户
1 .设置root用户密码:passwd root 输入密码 2 .编辑lightdm.conf gedit /etc/lightdm/lightdm.conf 最后加: greeter-show-m ...
- 《day18_String练习_基本类型包装类_集合入门》
package cn.itcast.api.String.test; public class StringTest_1 { public static void main(String[] args ...
- OBJECT ARX 获取标注样式信息
CString str = _T("标注样式"); CString strTmp(_T("")); ////获得当前图形的标注样式表 AcDbDimStyleT ...
- (转)iOS消息推送机制的实现
原:http://www.cnblogs.com/qq78292959/archive/2012/07/16/2593651.html iOS消息推送机制的实现 iOS消息推送的工作机制可以简单的用下 ...
- C/C++ memmove 和 memcpy
这两个函数用于拷贝字符串或者一段连续的内存,函数原型: void * memcpy ( void * destination, const void * source, size_t num ); v ...
- 【Tsinghua OJ】范围查询(Range)问题
[问题描述]数轴上有n个点,对于任一闭区间 [a, b],试计算落在其内的点数. [输入]第一行包括两个整数:点的总数n,查询的次数m.第二行包含n个数,为各个点的坐标.以下m行,各包含两个整数:查询 ...
- 【LeetCode OJ】Word Break II
Problem link: http://oj.leetcode.com/problems/word-break-ii/ This problem is some extension of the w ...
- Objective-C determine data network type of the iOS device
Im on an application that receive data from server, the problem is when user connect to cellular dat ...
- Cisco ASA端口映射
Cisco ASA 端口映射设置 1.使用ASDM进入到配置页面,点开NAT Rules,然后新增Network Object,NAT选项如下图所示设定. 下图设定外网IP映射到内网IP地址192.1 ...