首先把后缀数组和height数组都搞出来。。。

然后用两个单调栈维护$[l, r]$表示对于一个点$x$,满足$height[x] \le height[l..x] \ \&\&\  height[x] < height[x..r]$的最小的$l$和最大的$r$

这样子就可以保证不会重复计算了

 /**************************************************************
Problem: 3238
User: rausen
Language: C++
Result: Accepted
Time:4496 ms
Memory:20336 kb
****************************************************************/ #include <cstdio>
#include <cstring> using namespace std;
typedef long long ll;
const int N = 5e5 + ; int a[N], len;
int sa[N], rank[N], height[N]; inline void Sort(int *a, int *b, int *c, int n, int m) {
static int i, sum[N];
for (i = ; i <= m; ++i) sum[i] = ;
for (i = ; i < n; ++i) ++sum[c[a[i]]];
for (i = ; i <= m; ++i) sum[i] += sum[i - ];
for (i = n - ; ~i; --i)
b[--sum[c[a[i]]]] = a[i];
} void make_sa(int *s) {
int i, j;
static int x[N], y[N];
for (i = ; i < len; ++i) x[i] = s[i], rank[i] = i;
Sort(rank, sa, x, len, );
rank[sa[]] = ;
for (i = ; i < len; ++i)
rank[sa[i]] = rank[sa[i - ]] + (x[sa[i]] != x[sa[i - ]]);
for (i = ; i <= len; i <<= ) {
for (j = ; j < len; ++j)
x[j] = rank[j], y[j] = j + i < len ? rank[j + i] : , sa[j] = j;
Sort(sa, rank, y, len, len), Sort(rank, sa, x, len, len);
rank[sa[]] = ;
for (j = ; j < len; ++j)
rank[sa[j]] = rank[sa[j - ]] + (x[sa[j]] != x[sa[j - ]] || y[sa[j]] != y[sa[j - ]]);
if (rank[sa[len - ]] == len) return;
}
} void make_height() {
int i, j;
for (i = j = ; i < len; ++i) {
if (j) --j;
if (rank[i] != )
while (a[i + j] == a[sa[rank[i] - ] + j]) ++j;
height[rank[i]] = j;
}
} ll work() {
int i;
ll res;
static int s[N], top, l[N], r[N];
for (res = , i = ; i <= len; ++i) res += 1ll * i * (len - );
for (s[top = ] = , i = ; i <= len; ++i) {
while (height[i] <= height[s[top]] && top) --top;
l[i] = s[top] + ;
s[++top] = i;
}
for (s[top = ] = len + , i = len; i; --i) {
while (height[i] < height[s[top]] && top) --top;
r[i] = s[top] - ;
s[++top] = i;
}
for (i = ; i <= len; ++i)
res -= 2ll * (i - l[i] + ) * (r[i] - i + ) * height[i];
return res;
} int main() {
int i;
char ch;
for (len = ; ;) {
ch = getchar();
if ('a' <= ch && ch <= 'z') a[len++] = ch - 'a' + ;
else break;
}
make_sa(a);
make_height();
printf("%lld\n", work());
return ;
}

BZOJ3238 [Ahoi2013]差异的更多相关文章

  1. BZOJ3238 [Ahoi2013]差异 【SAM or SA】

    BZOJ3238 [Ahoi2013]差异 给定一个串,问其任意两个后缀的最长公共前缀长度的和 1.又是后缀,又是\(lcp\),很显然直接拿\(SA\)的\(height\)数组搞就好了,配合一下单 ...

  2. bzoj3238 [Ahoi2013]差异 后缀数组+单调栈

    [bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...

  3. [bzoj3238][Ahoi2013]差异_后缀数组_单调栈

    差异 bzoj-3238 Ahoi-2013 题目大意:求任意两个后缀之间的$LCP$的和. 注释:$1\le length \le 5\cdot 10^5$. 想法: 两个后缀之间的$LCP$和显然 ...

  4. [BZOJ3238][AHOI2013]差异(后缀数组)

    求和式的前两项可以直接算,问题是对于每对i,j计算LCP. 一个比较显然的性质是,LCP(i,j)是h[rk[i]+1~rk[j]]中的最小值. 从h的每个元素角度考虑,就是对每个h计算有多少对i,j ...

  5. [BZOJ3238][Ahoi2013]差异解题报告|后缀数组

    Description 先分析一下题目,我们显然可以直接算出sigma(len[Ti]+len[Tj])的值=(n-1)*n*(n+1)/2 接着就要去算这个字符串中所有后缀的两两最长公共前缀总和 首 ...

  6. BZOJ3238 [Ahoi2013]差异 【后缀数组 + 单调栈】

    题目链接 BZOJ3238 题解 简单题 经典后缀数组 + 单调栈套路,求所有后缀\(lcp\) #include<iostream> #include<cstdio> #in ...

  7. BZOJ3238: [Ahoi2013]差异 (后缀自动机)

    Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Output 54 HINT 2<=N< ...

  8. bzoj千题计划314:bzoj3238: [Ahoi2013]差异(后缀数组+st表+单调栈)

    https://www.lydsy.com/JudgeOnline/problem.php?id=3238 跟 bzoj3879 差不多 #include<cstdio> #include ...

  9. 2018.12.21 bzoj3238: [Ahoi2013]差异(后缀自动机)

    传送门 后缀自动机好题. 题意: 做法:samsamsam 废话 考虑翻转字串,这样后缀的最长公共前缀等于前缀的最长公共后缀. 然后想到parentparentparent树上面两个串的最长公共后缀跟 ...

随机推荐

  1. StopWatch的使用

    //StopWatch在System.Diagnostics命名控件,要使用它就要先引用这个命名空间. //其使用方法如下: //var stopWatch = new StopWatch(); // ...

  2. css样式 浏览器的读取顺序

    css样式 浏览器的读取顺序 例: tbody tr td{} 浏览器是先查找td,然后去找td tr,然后去找td tr tbody div p{}和div>p{}的区别 .div p{} 是 ...

  3. phpcms标签大全V9

    转自:http://blog.csdn.net/cloudday/article/details/7343448调用头部 尾部 {template "content"," ...

  4. 简单的poi导出excel文件

    /**** 创建excel文件**/ 1 import java.io.FileOutputStream; import java.io.IOException; import java.util.C ...

  5. iOS - OC NSSet 集合

    前言 NSSet:集合 @interface NSSet<__covariant ObjectType> : NSObject <NSCopying, NSMutableCopyin ...

  6. org.apache.jasper.JasperException: Expecting "jsp:param" standard action with "name" and "value" attributes

      jasper  英 ['dʒæspə]  美 ['dʒæspɚ] 跟读 口语练习 n. 碧玉:墨绿色 n. (Jasper)人名:(德)雅斯佩尔:(西)哈斯佩尔 JasperException 异 ...

  7. json与jsonp应用及其他ajax数据交互方式

    1.json是数据交换格式,使用实例如下: $.getJSON( '/manage/asset/asset_delByIds.action', { 'ids':id }, function(data) ...

  8. Maven核心概念之依赖,聚合与继承

    一.依赖 我们项目中依赖的jar包可以通过依赖的方式(dependencies元素下添加dependency子元素)引入. <dependency> <groupId>juni ...

  9. Java中的Swing键盘绑定案例

    package ch12; import javax.swing.*; import java.awt.*; import java.awt.event.*; /** * Created by Jiq ...

  10. Android设置Activity启动和退出时的动画

    业务开发时遇到的一个小特技,要求实现Activity启动时自下向上弹出,退出时自上向下退出. 此处不关注启动和退出时其他Activity的动画效果,实现方法有两种: 1.代码方式,通过Activity ...