A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

思路:

很典型的回溯问题,到[i,j]的路径等于到[i-1,j]和[i,j-1]的路径之和,然后为了避免重复求解子问题,结合查表法记录子问题结果。编码要点在于处理 trivial case。

代码:

 int uniquePaths2Node(vector<vector<int> > &oGrid, vector<vector<int> > &paths, int i, int j){
//if(i < 0 || j < 0) return 0;//failed [[1]]=>0, 应该把控制条件放下面,不给调用不valid的子问题
if(oGrid[i][j] == ) return ; if(i == && j == ) return ^ oGrid[][];//failed [[0]]=>1 int P = ;
if(i > && oGrid[i-][j] != ){
if(paths[i-][j] == -)
paths[i-][j] = uniquePaths2Node(oGrid, paths, i-, j);
P += paths[i-][j];
}
if(j > && oGrid[i][j-] != ){
if(paths[i][j-] == -)
paths[i][j-] = uniquePaths2Node(oGrid, paths, i, j-);
P += paths[i][j-];
}
return P;
}
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int m = obstacleGrid.size();
if(m == ) return ;
int n = obstacleGrid[].size();
if(n == ) return ; vector<vector<int> > paths(m, vector<int>(n, -));
return uniquePaths2Node(obstacleGrid, paths, m-, n-);
}

【题解】【矩阵】【回溯】【Leetcode】Unique Paths II的更多相关文章

  1. LeetCode: Unique Paths II 解题报告

    Unique Paths II Total Accepted: 31019 Total Submissions: 110866My Submissions Question Solution  Fol ...

  2. LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]

    唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...

  3. LEETCODE —— Unique Paths II [Dynamic Programming]

    唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...

  4. [LeetCode] Unique Paths II 不同的路径之二

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  5. [leetcode]Unique Paths II @ Python

    原题地址:https://oj.leetcode.com/problems/unique-paths-ii/ 题意: Follow up for "Unique Paths": N ...

  6. Leetcode Unique Paths II

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  7. [Leetcode] unique paths ii 独特路径

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  8. [Leetcode Week12]Unique Paths II

    Unique Paths II 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/unique-paths-ii/description/ Descrip ...

  9. [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )

    Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...

  10. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

随机推荐

  1. Stylus Studio的安装与卸载

  2. __attribute__特性介绍以及变量和函数特定布局设置

    ARM的MDK编译__attribute__介绍:http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0348bc/Ciafc ...

  3. 常州培训 day4 解题报告

    第一题:(简单的模拟题) 给出一个N位二进制数,有‘+’, ‘-’, ‘*’, ‘/’ 操作,分别表示加1,减1,乘2,除以2,给出M个操作,求出M个操作后的二进制数.N,M<=5000000; ...

  4. 详解centos用户&组权限&添加删除用户

    1.Linux用户操作系统 Linux操作系统是多用户多任务操作系统,包括用户账户和组账户两种: 细分用户账户(普通用户账户,超级用户账户)除了用户账户以为还有组账户所谓组账户就是用户账户的集合,ce ...

  5. 字符集与字符编码 (charset & encoding)

    乱码是个大坑,相信每个人都遇过,而且是个绕不过去的坑.我理解每个程序员都应该写一篇编码相关的博文,梳理自己对这一块的理解,下面是我反复理解多次之后的学习小结. 1.从记事本的不同编码说起: 打开记事本 ...

  6. RM报表预览,只有固定的1个订单页面

    明明选了多个记录,预览时,只显示最后一个. 原因: 主项数据的数据集选了报表自带的虚拟数据集了.

  7. LA 5061 LCA tarjan 算法

    题目大意: 给定所有点的权值都为0,给定一棵树以后,每次询问都要求给定两点 x , y 和一个权值w,要求x,y路径上所有点权值加上w,最后求出每一个节点的值 这里因为查询和点都特别多,所以希望能最后 ...

  8. 在线体验K2 BPM微信审批

    “微信审批”在江湖中传言已久,但很多人依然“只闻其声,未见其人”,这传说中的手感到底有多好?今天,我们就一起来揭开它的真面目吧. 故事发生在上周六傍晚,我接到了加班电话. 晚上21:30终于加完班了, ...

  9. mouseOver与rollOver

    区别: 当父容器监听这两个事件,鼠标从父容器移到子容器再移回父容器时,会触发mouseOver.mouseout事件,但是不会触发rollover.rollout事件.

  10. servlet filter可以用注解

    现在好像可以在新建一个servlet.filter等的的时候在选项中设置urlmapping,通过注解的方式来监控action,以及设置初始参数initparameter.