一个很玄乎的问题,但听到2-SAT之后就豁然开朗了。题目的意思是这样的,给你n个点群,每个点群里面有两个点,你要在每个点群里面选一个点,以这些点做半径为r的圆,然后r会有一个最大值,问的就是怎么选这些点使得r最大。

2-SAT就是对于每个变量有一些制约的关系   a->b 表示选了a就就要选b。然后我们二分这个半径,对于两点间距离<2*r的点(a,b)选了a就不能选b,选了b就不能选a,以此构图。然后跑一次强连通分量。最后判是否有解的时候就是判对于两个属于相同点群的点,它们不能处于同一强连通分量下。写的时候跪的点实在太多了,数组越界呀,强连通写错呀,精度呀,这样的题太坑爹了- -0

#pragma warning(disable:4996)
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<vector>
#define ll long long
#define maxn 220
#define eps 1e-8
using namespace std; struct Point
{
double x, y, z;
Point(double xi, double yi, double zi) :x(xi), y(yi), z(zi){}
Point(){}
}p[maxn * 2]; double dist(Point a, Point b){
return sqrt((a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y) + (a.z - b.z)*(a.z - b.z));
} double dis[maxn * 2][maxn * 2]; int low[maxn * 2];
int pre[maxn * 2];
int dfs_clock;
int sta[maxn * 2];
int st;
int sccno[maxn * 2];
int n;
vector<int> G[maxn * 2];
int scc_cnt; int dcmp(double x){
return (x > eps) - (x < -eps);
} void dfs(int u){
low[u] = pre[u] = ++dfs_clock;
sta[++st] = u;
for (int i = 0; i < G[u].size(); i++){
int v = G[u][i];
if (!pre[v]){
dfs(v);
low[u] = min(low[u], low[v]);
}
else if (!sccno[v]){
low[u] = min(low[u], pre[v]);
}
}
if (low[u] == pre[u]){
++scc_cnt;
while (1){
int x = sta[st]; st--;
sccno[x] = scc_cnt;
if (x == u) break;
}
}
} bool judge(double x)
{
memset(sccno, 0, sizeof(sccno));
memset(pre, 0, sizeof(pre));
memset(low, 0, sizeof(low));
st = 0; dfs_clock = 0;
scc_cnt = 0;
for (int i = 0; i <= 2 * n; i++) G[i].clear(); for (int i = 0; i < n; i++){
for (int j = i + 1; j < n; j++){
if (dcmp(dis[i][j] - 2 * x) < 0){
G[i].push_back(j + n);
G[j].push_back(i + n);
}
if (dcmp(dis[i][j + n] - 2 * x) < 0){
G[i].push_back(j);
G[j + n].push_back(i + n);
}
if (dcmp(dis[i + n][j] - 2 * x) < 0){
G[i + n].push_back(j + n);
G[j].push_back(i);
}
if (dcmp(dis[i + n][j + n] - 2 * x) < 0){
G[i + n].push_back(j);
G[j + n].push_back(i);
}
}
}
for (int i = 0; i < 2 * n; i++){
if (!pre[i]) dfs(i);
}
for (int i = 0; i < n; i++){
if (sccno[i] == sccno[i + n]) return false;
}
return true;
} int main()
{
while (cin >> n)
{
for (int i = 0; i < n; i++){
scanf("%lf%lf%lf", &p[i].x, &p[i].y, &p[i].z);
scanf("%lf%lf%lf", &p[i + n].x, &p[i + n].y, &p[i + n].z);
}
for (int i = 0; i < 2 * n; i++){
for (int j = i + 1; j < 2 * n; j++){
dis[i][j] = dis[j][i] = dist(p[i], p[j]);
}
}
double l = 0, r = 1e10;
while (dcmp(r - l)>0){
double mid = (l + r) / 2;
if (judge(mid)) l = mid;
else r = mid;
}
int tmp = l * 1000;
double ans = tmp / 1000.0;
printf("%.3lf\n", ans);
}
return 0;
}

ZOJ3717 Balloon(2-SAT)的更多相关文章

  1. 多边形碰撞 -- SAT方法

    检测凸多边形碰撞的一种简单的方法是SAT(Separating Axis Theorem),即分离轴定理. 原理:将多边形投影到一条向量上,看这两个多边形的投影是否重叠.如果不重叠,则认为这两个多边形 ...

  2. HDOJ 1004 Let the Balloon Rise

    Problem Description Contest time again! How excited it is to see balloons floating around. But to te ...

  3. hdu 1004 Let the Balloon Rise

    Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  4. 【ZOJ1003】Crashing Balloon(DFS)

    Crashing Balloon Time Limit: 2 Seconds      Memory Limit: 65536 KB On every June 1st, the Children's ...

  5. Let the Balloon Rise

    Problem Description Contest time again! How excited it is to see balloons floating around. But to te ...

  6. 杭电1170 Balloon Comes

    Problem Description The contest starts now! How excited it is to see balloons floating around. You, ...

  7. Let the Balloon Rise 分类: HDU 2015-06-19 19:11 7人阅读 评论(0) 收藏

    Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  8. HDU 1004 Let the Balloon Rise map

    Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  9. HDU1004 Let the Balloon Rise(map的简单用法)

    Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...

随机推荐

  1. C# 将汉字转化成拼音

    本文来自http://www.cnblogs.com/yazdao/archive/2011/06/04/2072488.html 首先下载Visual Studio International Pa ...

  2. eth0: error fetching interface information: Device not found

    转载,原文出处:http://zh888.blog.51cto.com/1684752/775447 亲测有效,感谢作者!!! ----------------------------分割线----- ...

  3. mysql取整,小数点处理函数floor(), round()

    mysql数值处理函数floor与round    在mysql中,当处理数值时,会用到数值处理函数,如有一个float型数值2.13,你想只要整数2,那就需要下面的函数floor与round.   ...

  4. 014--VS2013 C++ c++定时动画

    资源图片 //全局变量HBITMAP girl[7];HDC mdc, hdc;int num; //--------------------------------------------InitI ...

  5. Android实现传感器应用及位置服务

    Android实现传感器应用及位置服务 开发工具:Andorid Studio 1.3 运行环境:Android 4.4 KitKat 代码实现 这里需用获取加速度传感器和地磁传感器,手机获取旋转的方 ...

  6. python三级菜单

    #-*- coding:utf-8 -*-#Author:gxli #一级菜单项def menu(): #遍历字典dic一级菜单 print('-----------一级菜单------------- ...

  7. SetTmer函数调用 、取时间函数调用 、计时函数

    SetTmer函数调用 #include <iostream> 取时间函数调用 计时函数

  8. C++四则运算出题器---有答案版

    一.实验题目 四则运算扩展----能接受答案并判断对错然后给出成绩. 二.实验思路 在每次输出算式后面输入答案,然后判断对错,对则统计. 稍微优化了一下界面. 三.代码 // 12345.cpp : ...

  9. JavaScript 函数调用

    JavaScript 函数有 4 种调用方式. 每种方式的不同方式在于 this 的初始化. this 关键字 一般而言,在Javascript中,this指向函数执行时的当前对象. 注意 this ...

  10. 【Minimum Depth of Binary Tree】cpp

    题目: Given a binary tree, find its minimum depth. The minimum depth is the number of nodes along the ...