【面试题043】n个骰子的点数
- 先把骰子分成两堆,第一堆只有一个,第二堆有n-1个,
- 单独的那一个可能出现1到6的点数,我们需要计算从1-6的每一种点数和剩下的n-1个骰子来计算点数和。
- 还是把n-1个那部分分成两堆,上一轮的单独骰子点数和这一轮的单独骰子点数相加,然后再和剩下的n-2个骰子来计算点数和。
不难发现这是一种递归的思路。
|
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
#include <iostream>
#include <cstdio> using namespace std; int g_maxValue = 6; void Probability(int original, int current, int sum, int *pProbabilities) void Probability(int number, int *pProbabilities) void PrintProbability(int number) Probability(number, pProbabilities); int total = pow( (double)g_maxValue, number); int main() |
- 用两个数组来存储骰子点数的每一种出现的次数。
- 在一次循环中,第一个数组中的第n个数字表示骰子和为n出现的次数。
- 在下一次循环中我们加上一个新的骰子,此时和为n的骰子出现的次数应该等于上一次循环中骰子点数和为n-1、n-2、n-3、n-4、n-5与n-6的次数的综合,所以我们把另一个数组的第n个数字设为前一个数组对应的第n-1、n-2、n-3、n-4、n-5与n-6之和。
|
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
#include <iostream>
#include <cstdio> using namespace std; int g_maxValue = 6; void PrintProbability(int number) int flag = 0; for (int k = 2; k <= number; ++k) for (int i = k; i <= g_maxValue * k; ++i) int main() |
【面试题043】n个骰子的点数的更多相关文章
- 《剑指offer(第二版)》面试题60——n个骰子的点数
一.题目描述 把n个骰子仍在地上,所有的骰子朝上的一面的点数之和为s,输入n,打印出s所有可能的值出现的概率. 二.题解 <剑指offer>上给出的两种方法,尤其是代码,晦涩难懂且没有注释 ...
- 《剑指offer》 面试题43 n个骰子的点数 (java)
引言:写这篇文章的初衷只是想做个笔记,因为这道题代码量有点大,有点抽象,而书上并没有详细的注释.为了加深印象和便于下次复习,做个记录. 原题:把n个骰子扔到地上,所有骰子朝上一面的点数之后为s. 输入 ...
- 《剑指offer》面试题60. n个骰子的点数
问题描述 把n个骰子扔在地上,所有骰子朝上一面的点数之和为s.输入n,打印出s的所有可能的值出现的概率. 你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n 个骰子所能掷出的点数集合中第 i ...
- 面试题 43 n 个骰子的点数
; void printfProbability(int number) { ) return; ]; p[] = ]; p[] = ]; memset(p[], , )); memset(p[], ...
- 【剑指offer】面试题43:n个骰子的点数
第一种思路是,每一个骰子的点数从最小到最大,如果为1-6,那么全部的骰子从最小1開始,我们如果一种从左向右的排列,右边的最低,索引从最低開始,推断和的情况. def setTo1(dices, sta ...
- (剑指Offer)面试题43:n个骰子的点数
题目: 把n个骰子仍在地上,所有骰子朝上一面的点数之和为s.输入n,打印出s的所有可能的值出现的概率. 思路: s可能出现的值的范围为:n--6*n 1.全排列 回溯法枚举n个骰子(6面)的全排列,然 ...
- 剑指Offer面试题43(Java版):n个骰子的点数
题目:把n个骰子仍在地上.全部骰子朝上一面的点数之和为s,输入n,打印出s的全部可能的值出现的概率. 解法一:基于递归求骰子的点数,时间效率不够高 如今我们考虑怎样统计每个点数出现的次数. 要向求出n ...
- 《剑指offer》第六十题(n个骰子的点数)
// 面试题60:n个骰子的点数 // 题目:把n个骰子扔在地上,所有骰子朝上一面的点数之和为s.输入n,打印出s // 的所有可能的值出现的概率. #include <iostream> ...
- 新增6 n个骰子的点数
/* * * 面试题43:n个骰子的点数 * 把n个骰子扔在地上,所有骰子朝上一面的点数之和为s. * 输入n,打印出s的所有可能的值出现的概率. * */ #include <iostream ...
随机推荐
- m3u8
audo apt-get install pkg-configsudo apt-get install automake autoconf m4 libtool sudo apt-get instal ...
- myeclipse激活+Aptana安装配置
一.Myeclipse安装激活. 安装过程一路向下. 1.破解公钥,确保MyEclipse没有开启,否则失败! 用WinRAR或7-zip打开安装目录下Common\plugins\com.genui ...
- hdu 2645 find the nearest station
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=2645 find the nearest station Description Since dande ...
- Go中的指针与函数接收器
Go中使用*号表示指针,但是没有指针算数,不能对其进行加减.同时内存管理都由Go来负责,不需要拖动释放内存. Go中的函数接收者,可以为值类型,也可以是引用类型. 看代码: package main ...
- Go字典
字典(map)是Go语言内置的数据结构,一组键值对的无序集合. 看代码: package main import "fmt" func main() { //使用make申请一个m ...
- Linux下安装MySQLdb模块
1,查看是否已安装MySQLdb模块 进入python的命令行,输入 import MySQLdb 如果没有报错,证明此模块已经安装,可以跳过以下步骤. 2,下载最新的MySQLdb安装包: wget ...
- 开启Objective-C --- OC基础知识
一.Objective-C简述 Objective-C通常写作ObjC和较少用的Objective C或Obj-C,是扩充C的面向对象编程语言.Objective-C主要用于:编写iOS操作 ...
- 部署报表和 ReportViewer 控件 rdlc
部署报表和 ReportViewer 控件 您可以将报表和 ReportViewer 控件作为应用程序的一部分自由发布.根据控件类型以及报表是配置为本地处理还是远程处理,部署要求会有很大不同.在同一个 ...
- SQL Server数据库学习笔记-E-R模型
实体(Entities)联系(Relationships)模型简称E-R模型也称E-R方法,是由P.P.Chen于1976年首先提出的.还有一个关键元素Attributes-属性,它提供不受任何数据库 ...
- 一、JPEG文件格式-----压缩框架
JPEG文件格式 http://wenku.baidu.com/view/4856d31dc281e53a5802ff0d.html 标记名 FF E0 ...