linux kernel 0.11 setup
setup作用
①读取参数放在0x90000处。
②将原本在0x10000处的system模块移至0x00000处
③加载中断描述符表,全局描述符表,进入32位保护模式。
概念
关于实模式和保护模式区别及寻址方式,该博客已经很详尽:http://blog.csdn.net/rosetta/article/details/8933200,只是有个别信息没有。
IDT:Interrupt Descriptor Table--中断描述表
GDT:Global Descriptor Table --全局描述表
LDT:Local Descriptor Table --局部描述表
在Intel架构中,更准确的说是保护模式下,大部分内存管理和中断服务例程都通过描述符表来控制。每个描述符存储了CPU随时可能需要获取的一个单个对象(例如服务例程、任务、一段代码或数据等)的信息。如果试图装载一个数据到一个段寄存器中,CPU需要进行安全性和访问控制检查,来确认是否获得了访问该内存区域的许可。一旦检查结束,一些有用的信息(例如最低和最高地址)被缓存在CPU中的几个不可见的寄存器中。
Intel定义了3种类型的描述符表:中断描述符表IDT(用以替换中断向量表IVT)、全局描述符表GDT和局部描述符表LDT。每个表分别通过LIDT、LGDT、LLDT指令以(size, linear address)的形式定义(注:是载入描述符表的指令,这里就是说表包含了大小和基址组成。)。大多数情况下,操作系统中启动期指定这些表的位置,然后通过一个指针直接读写这些表。
setup源代码注释
- !
- ! setup.s (C) Linus Torvalds
- !
- ! setup.s is responsible for getting the system data from the BIOS,
- ! and putting them into the appropriate places in system memory.
- ! both setup.s and system has been loaded by the bootblock.
- !
- ! This code asks the bios for memory/disk/other parameters, and
- ! puts them in a "safe" place: 0x90000-0x901FF, ie where the
- ! boot-block used to be. It is then up to the protected mode
- ! system to read them from there before the area is overwritten
- ! for buffer-blocks.
- !
- ! NOTE! These had better be the same as in bootsect.s!
- INITSEG = 0x9000 ! we move boot here - out of the way
- SYSSEG = 0x1000 ! system loaded at 0x10000 ().
- SETUPSEG = 0x9020 ! this is the current segment
- .globl begtext, begdata, begbss, endtext, enddata, endbss
- .text
- begtext:
- .data
- begdata:
- .bss
- begbss:
- .text
- entry start
- start:
- ! ok, the read went well so we get current cursor position and save it for
- ! posterity.
- ! input:
- ! BH = page number.
- ! return:
- ! DH = row.
- ! DL = column.
- ! CH = cursor start line.
- ! CL = cursor bottom line.
- mov ax,#INITSEG ! this is done in bootsect already, but...
- mov ds,ax
- mov ah,#0x03 ! read cursor pos
- xor bh,bh
- int 0x10 ! save it in known place, con_init fetches
- mov [],dx ! it from 0x90000.光标的行 列的值
- ! Get memory size (extended mem, kB) 内存大小
- mov ah,#0x88
- int 0x15
- mov [],ax
- ! Get video-card data: 声卡数据
- mov ah,#0x0f
- int 0x10
- mov [],bx ! bh = display page
- mov [],ax ! al = video mode, ah = window width
- ! check for EGA/VGA and some config parameters VGA和配置参数
- mov ah,#0x12
- mov bl,#0x10
- int 0x10
- mov [],ax
- mov [],bx
- mov [],cx
- ! Get hd0 data 磁盘第一分区数据
- mov ax,#0x0000
- mov ds,ax
- lds si,[*0x41]
- mov ax,#INITSEG
- mov es,ax
- mov di,#0x0080
- mov cx,#0x10
- rep
- movsb
- ! Get hd1 data 磁盘第二分区数据
- mov ax,#0x0000
- mov ds,ax
- lds si,[*0x46]
- mov ax,#INITSEG
- mov es,ax
- mov di,#0x0090
- mov cx,#0x10
- rep
- movsb
- ! Check that there IS a hd1 :-) 检查是否存在第二个硬盘,不存在则清空磁盘二的参数表
- mov ax,#0x01500
- mov dl,#0x81
- int 0x13
- jc no_disk1
- cmp ah,#
- je is_disk1
- no_disk1: !清空磁盘二的参数表
- mov ax,#INITSEG
- mov es,ax
- mov di,#0x0090
- mov cx,#0x10
- mov ax,#0x00
- rep
- stosb
- is_disk1:
- ! now we want to move to protected mode ...开始我们要保护模式方面的工作了。
- cli ! no interrupts allowed !cli是关中断,防止有些硬件中断对程序的干扰 sti是开中断,允许硬件中断
- ! first we move the system to it's rightful place
- mov ax,#0x0000
- cld ! 'direction'=0, movs moves forward cld即告诉程序si,di向前移动,std指令为设置方向,告诉程序si,di向后移动
- do_move: ! 0x1000=64k 循环移动ds:si->es:di数据,总共移动cx=(0x9000-0x1000)=0x8000的数据
- mov es,ax ! destination segment
- add ax,#0x1000
- cmp ax,#0x9000
- jz end_move
- mov ds,ax ! source segment
- sub di,di
- sub si,si
- mov cx,#0x8000
- rep
- movsw
- jmp do_move
- ! then we load the segment descriptors
- end_move: ! 从实模式进入保护模式
- mov ax,#SETUPSEG ! right, forgot this at first. didn't work :-)
- mov ds,ax
- lidt idt_48 ! load idt with , 指令以(size=, linear address=)的形式加载中断描述符表
- lgdt gdt_48 ! load gdt with whatever appropriate
- ! 指令以(size=0x800, linear address=+gdt,0x9)的形式加载全局描述符表
- ! that was painless, now we enable A20
- call empty_8042!等待为空
- mov al,#0xD1 ! command write
- out #0x64,al
- call empty_8042
- mov al,#0xDF ! A20 on
- out #0x60,al
- call empty_8042
- ! well, that went ok, I hope. Now we have to reprogram the interrupts :-(
- ! we put them right after the intel-reserved hardware interrupts, at
- ! int 0x20-0x2F. There they won't mess up anything. Sadly IBM really
- ! messed this up with the original PC, and they haven't been able to
- ! rectify it afterwards. Thus the bios puts interrupts at 0x08-0x0f,
- ! which is used for the internal hardware interrupts as well. We just
- ! have to reprogram the 's, and it isn't fun.
- mov al,#0x11 ! initialization sequence
- out #0x20,al ! send it to 8259A-
- .word 0x00eb,0x00eb ! jmp $+, jmp $+
- out #0xA0,al ! and to 8259A-
- .word 0x00eb,0x00eb
- mov al,#0x20 ! start of hardware int's (0x20)
- out #0x21,al
- .word 0x00eb,0x00eb
- mov al,#0x28 ! start of hardware int's (0x28)
- out #0xA1,al
- .word 0x00eb,0x00eb
- mov al,#0x04 ! - is master
- out #0x21,al
- .word 0x00eb,0x00eb
- mov al,#0x02 ! - is slave
- out #0xA1,al
- .word 0x00eb,0x00eb
- mov al,#0x01 ! mode for both
- out #0x21,al
- .word 0x00eb,0x00eb
- out #0xA1,al
- .word 0x00eb,0x00eb
- mov al,#0xFF ! mask off all interrupts for now
- out #0x21,al
- .word 0x00eb,0x00eb
- out #0xA1,al
- ! well, that certainly wasn't fun :-(. Hopefully it works, and we don't
- ! need no steenking BIOS anyway (except for the initial loading :-).
- ! The BIOS-routine wants lots of unnecessary data, and it's less
- ! "interesting" anyway. This is how REAL programmers do it.
- !
- ! Well, now's the time to actually move into protected mode. To make
- ! things as simple as possible, we do no register set-up or anything,
- ! we let the gnu-compiled -bit programs do that. We just jump to
- ! absolute address 0x00000, in -bit protected mode.
- mov ax,#0x0001 ! protected mode (PE) bit
- lmsw ax ! This is it!
- jmpi , ! jmp offset of segment (cs)
- ! This routine checks that the keyboard command queue is empty
- ! No timeout is used - if this hangs there is something wrong with
- ! the machine, and we probably couldn't proceed anyway.
- empty_8042:
- .word 0x00eb,0x00eb
- in al,#0x64 ! 8042 status port
- test al,#2 ! is input buffer full?
- jnz empty_8042 ! yes - loop
- ret
- gdt:
- .word 0,0,0,0 ! dummy
- .word 0x07FF ! 8Mb - limit=2047 (2048*4096=8Mb)
- .word 0x0000 ! base address=0
- .word 0x9A00 ! code read/exec
- .word 0x00C0 ! granularity=4096, 386
- .word 0x07FF ! 8Mb - limit=2047 (2048*4096=8Mb)
- .word 0x0000 ! base address=0
- .word 0x9200 ! data read/write
- .word 0x00C0 ! granularity=4096, 386
- idt_48:
- .word 0 ! idt limit=0
- .word 0,0 ! idt base=0L
- gdt_48:
- .word 0x800 ! gdt limit=2048, 256 GDT entries
- .word 512+gdt,0x9 ! gdt base = 0X9xxxx
- .text
- endtext:
- .data
- enddata:
- .bss
- endbss:
linux kernel 0.11 setup的更多相关文章
- linux kernel 0.11 head
head的作用 注意:bootsect和setup汇编采用intel的汇编风格,而在head中,此时已经进入32位保护模式,汇编的采用的AT&T的汇编语言,编译器当然也就变成对应的编译和连接器 ...
- linux kernel 0.11 bootsect
bootsect作用 ①将自己移动到0x90000处 ②将setup从磁盘读到0x90200处 ③将system从磁盘读到0x10000处 寄存器 汇编代码中存在:数据段data seg 栈段 sta ...
- Linux内核0.11 setup文件说明
一.总体功能介绍 这是关于Linux-kernel-0.11中boot文件夹下setup.s源文件的实现功能的总结说明. setup.s是一个操作系统加载程序,它的主要功能是利用BIOS中断读取机器系 ...
- Linux Kernel 4.11首个候选版本开放下载
Linus Torvalds宣布了即将到来的Linux Kernel 4.11内核分支的首个候选(RC)版本,用户可下载.编译并在自己的GNU/Linux发行版本中进行测试.Linus Torvald ...
- Linux Kernel 0.12 启动简介,调试记录(Ubuntu1804, Bochs, gdb)
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明 本文作为本人csdn blog的主站的备份.(Bl ...
- Linux内核0.11代码阅读(转)
最近决定开始阅读Linux 0.11的源代码. 学习Linux操作系统的核心概念最好的方法莫过于阅读源代码.而Linux当前最新的源代码包已经有70MB左右,代码十分庞大,要想深入阅读十分困难.而Li ...
- Linux内核0.11体系结构 ——《Linux内核完全注释》笔记打卡
0 总体介绍 一个完整的操作系统主要由4部分组成:硬件.操作系统内核.操作系统服务和用户应用程序,如图0.1所示.操作系统内核程序主要用于对硬件资源的抽象和访问调度. 图0.1 操作系统组成部分 内核 ...
- Linux mysql8.0.11安装
准备:检查是否已安装过mysql,若有便删除(linux系统自带的) rpm -qa | grep mariadb rpm -e nodeps mariadb-libs-5.5.56-2.el7.x8 ...
- Linux Kernel 3.11.4/3.10.15/3.4.65/3.0.99
Linux 今天又发布了4个更新版本,分别是: 3.11.4 2013-10-05 [tar.xz] [pgp] [patch] [view patch] [view inc] [cgit] [cha ...
随机推荐
- 在EXCEL中使用SQL查询
Excel2007及以上版本才有这个功能,2003版本的要么路过学习一下.要么去升级下自己的版本. Microsoft query 用的是 access 语法 如:判断空 oracle ------- ...
- Swift 学习一函数&函数属性&懒加载
函数 函数相当于OC中的方法 格式: func 函数名(参数列表) -> 返回值类型 { 代码块 return 返回值} func 函数名(参数列表){ // 返回值为Void 可 ...
- ZJOI2009 假期的宿舍
题目描述 学校放假了 · · · · · · 有些同学回家了,而有些同学则有以前的好朋友来探访,那么住宿就是一个问题.比如 A 和 B 都是学校的学生,A 要回家,而 C 来看B,C 与 A 不认识. ...
- 学习记录 Java常见的几种字符集以及对 AscII的了解
1.ASCII码 我们知道,在计算机内部,所有的信息最终都表示为一个二进制的字符串.每一个二进制位(bit)有0和1两种状态,因此八个二进制位就可以组合出256种状态,这被称为一个字节(byte). ...
- BFPRT(线性查找算法)
BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分 析,BFPRT可以保证在最坏情况下仍为线性时间复杂度.该算法的思想与快速排序思想相似,当然,为使得算法 ...
- TCP/IP详解学习笔记(8)-- UDP:用户数据报协议
1.UDP概述 UDP是一种无连接的, 即发送数据前不需要建立连接,因此减小的开销和发送数据的延迟. UDP使用尽最大努力交付,即不保证可靠交付,因此主机不需要维持复杂的连接状态表. UDP是面向报文 ...
- python os模块sys模块常用方法
官方文档看这里 https://docs.python.org/3.5/library/os.html http://www.cnblogs.com/wupeiqi/articles/5501365. ...
- Qt, 我回来了。。。
说起qt,大学时就有接触,但一直没有深入,这个周六周天利用两于时间重新温习了一下,跟之前用过的vs上的MFC.C++ builder比起来,Qt封装很人性化,库也比较全,写个 一般的小工具很轻松. 参 ...
- Android 弹出框
1.Java package com.fish.helloworld; import android.app.Activity; import android.app.AlertDialog; imp ...
- C puzzles详解【26-30题】
第二十六题(不会) The following is a simple program which implements a minimal version of banner command ava ...