本系列文章允许转载,转载请保留全文!

【请先阅读】【说明&总目录】http://www.cnblogs.com/tbcaaa8/p/4415055.html

1. 梯度下降法 (Gradient Descent)

梯度下降法是一种用来寻找函数最小值的算法。算法的思想非常简单:每次沿与当前梯度方向相反的方向走一小步,并不断重复这一过程。举例如下:

[例]使用梯度下降法,求z=0.3x2+0.4y2+2的最小值。

第一步:求解迭代格式。根据“每次沿与当前梯度方向相反的方向走一小步”的思想,可知x(k+1)=x(k)-0.6x(k), y(k+1)=y(k)-0.8y(k)

第二步:选择迭代的初始值。初始值一般可以随意选择,但恰当的初始值有助于提升收敛速度。本例中选择x(0)=1, y(0)=1

第三步:根据迭代格式和初始值进行迭代求解。迭代过程如下:

k x(k) y(k) z(x(k),y(k))
0 1.00 1.00 2.7000
1 0.40 0.20 2.0640
2 0.16 0.04 2.0083
3 0.06 0.01 2.0013
4 0.03 0.00 2.0002
5 0.01 0.00 2.0000
6 0.00 0.00 2.0000

结论:可以发现,第6次迭代后,算法收敛。所求最小值为2。

梯度下降算法如何进行收敛判定呢?一个通用的方法是判断相邻两次迭代中,目标值变化量的绝对值是否足够小。具体到上述例题,就是判断|z(x(k+1),y(k+1))-z(x(k),y(k))|<eps是否成立。eps是一个足够小的正实数,可以根据所需要的精度进行选取,本例中eps=10-4

需要注意的是,梯度下降法有可能陷入局部最优解。可以通过多次随机选取初始值以及增加冲量项等方法加以改善,本系列后续文章中可能涉及。

2. 线性回归 (Linear Regression)

线性回归是对自变量和因变量之间关系进行建模的回归分析,回归函数满足如下形式:

  

我们使用表示数据组数,使用表示数据的维数;使用表示第组数据的自变量和因变量,使用表示第组数据自变量的第个分量。推导过程基于如下假设:

即每一组数据的误差项相互独立,且均服从均值为0,方差为的正态分布。进而,我们可以得到似然函数:

对数似然函数:

化简,可得:

定义损失函数:

要使似然函数最大,只需使损失函数最小。我们使用损失函数的极小值代替最小值,只需对每一个求偏导数:

最后,使用梯度下降法迭代求解:

其中,为学习率,是一个大于0的常数。学习率应当慎重选择,过大会导致算法不收敛,过小会导致收敛速度缓慢。在实际应用中,可以根据具体情况对学习率进行调节。有资料表明,当  时,上述算法收敛。由于难以高效计算,因此往往使用来代替。

3. 逻辑回归 (Logistic Regression)

当因变量只能在{0,1}中取值时,线性回归模型不再适合,因为极端数据的存在会使阀值的选择变得困难。我们可以使用逻辑回归对数据进行建模。回归函数满足如下形式:

其中:

sigmoid函数具有如下性质:

推导过程基于如下假设:(其实就是假设y(i)~Bernoulli(hθ(x(i))))

考虑到取值的特殊性,上述假设等价于以下形式:

进而得到似然函数:

对数似然函数:

化简,得:

定义损失函数:

要使似然函数最大,只需使损失函数最小。我们使用损失函数的极小值代替最小值,只需对每一个求偏导数:

化简,得:

最后,使用梯度下降法迭代求解:

含义同上。

Machine Learning 学习笔记 (1) —— 线性回归与逻辑回归的更多相关文章

  1. 吴恩达Machine Learning学习笔记(三)--逻辑回归+正则化

    分类任务 原始方法:通过将线性回归的输出映射到0-1,设定阈值来实现分类任务 改进方法:原始方法的效果在实际应用中表现不好,因为分类任务通常不是线性函数,因此提出了逻辑回归 逻辑回归 假设表示--引入 ...

  2. [Machine Learning]学习笔记-Logistic Regression

    [Machine Learning]学习笔记-Logistic Regression 模型-二分类任务 Logistic regression,亦称logtic regression,翻译为" ...

  3. Machine Learning 学习笔记

    点击标题可转到相关博客. 博客专栏:机器学习 PDF 文档下载地址:Machine Learning 学习笔记 机器学习 scikit-learn 图谱 人脸表情识别常用的几个数据库 机器学习 F1- ...

  4. Coursera 机器学习 第6章(上) Advice for Applying Machine Learning 学习笔记

    这章的内容对于设计分析假设性能有很大的帮助,如果运用的好,将会节省实验者大量时间. Machine Learning System Design6.1 Evaluating a Learning Al ...

  5. Machine Learning 学习笔记 (4) —— 广义线性模型

    本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 指数分布族简介 之前的文章分 ...

  6. Machine Learning 学习笔记1 - 基本概念以及各分类

    What is machine learning? 并没有广泛认可的定义来准确定义机器学习.以下定义均为译文,若以后有时间,将补充原英文...... 定义1.来自Arthur Samuel(上世纪50 ...

  7. [Python & Machine Learning] 学习笔记之scikit-learn机器学习库

    1. scikit-learn介绍 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上.值得一提的是,scikit-learn最 ...

  8. Machine Learning 学习笔记 (3) —— 泊松回归与Softmax回归

    本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 泊松回归 (Poisson ...

  9. PytorchZerotoAll学习笔记(五)--逻辑回归

    逻辑回归: 本章内容主要讲述简单的逻辑回归:这个可以归纳为二分类的问题. 逻辑,非假即真.两种可能,我们可以联想一下在继电器控制的电信号(0 or 1) 举个栗子:比如说你花了好几个星期复习的考试(通 ...

随机推荐

  1. java 命令行操作

    打包命令 例如:将testproject下的文件打包成test.war jar cvf test.war ./testproject

  2. svn服务端配置

    1.建立版本库 创建一个新的Subversion项目svnadmin create /var/www/svndata/njlrxx 配置允许用户jiqing访问cd /var/www/svndata/ ...

  3. IE样式兼容写法

    1.第一种写法 利用<!--[if lt IE 6/7/8/9/10/11]><![endif]-->,给每个html写一个class <!DOCTYPE html> ...

  4. poj3692_Kindergarten

    这题目大意是:男孩互相认识,女孩互相认识,一部分男女之间认识,老师要选一部分人,要求这部分人必须都相互认识. 这是一个二部图,先求出补图,在补图中G‘左右两点有连线说明在G中两者不认识,反之成立. 所 ...

  5. Android IOS WebRTC 音视频开发总结(四一)-- QQ和webrtc打洞能力pk

    很多人知道webrtc打洞能力很强,到底有多强但是不知道,比较好的方法就是跟QQ对比,但大多数公司很难模拟各种网络环境进行测试,比如联通,铁通,电信,移动,所以这次请小师妹在实验室下进行了一个比较全面 ...

  6. Large-Scale Named Entity Disambiguation Based on Wikipedia Data

    Large-Scale Named Entity Disambiguation Based on Wikipedia Data 基于维基百科数据的大规模命名实体消岐 1.引言 1.1. 概念 实体(e ...

  7. 搭建高性能计算环境(十)、应用软件的安装之Wien2k

    1,首先安装fftw .tar.gz cd fftw- ./configure --prefix=/opt/fftw- --enable-shared --enable-float --enable- ...

  8. Lwip的相关资料

    文件资料 Lwip编程指南 Lwip协议栈的设计与实现 分析Lwip

  9. (二)、NodeJS 、Express4安装使用方法

    第一步:安装Nodejs 第二步:安装express等部件 1.打开命令窗口,安装express.jade npm install -g express npm install -g express- ...

  10. echarts 各种细节问题

    1.最大值最小值异常 //如果数组中的数字是字符串的形式的话,echarts计算最大最小值不正确,故将String的数字转化成Number类型 //将包含字符串的数组转化为浮点数数组 function ...