起因:对应用的监控和测量是WEB应用的一个重要话题,尤其在监控错误率,并发量,以及框架库中的动态值。于是,在性能优化的时候找到了metrics.net。

  • 简介
  • 开始使用
  • 度量
  • Gauges
  • Counters
  • Meters
  • Histograms
  • Timers

1. 簡介

Metrics.NET - a .NET Port, with lots of additional functionality, of the awesome Java metrics library by Coda Hale.

2. Getting Started

Install-Package Metrics.NET
Install-Package Metrics.NET.ElasticSearch -Version 0.5.0 # with ES
Install-Package Metrics.NET.Graphite -Version 0.5.0 #with Graphite

other:

  • Metrics.NET.RabbitMQ
  • Metrics.NET.InfluxDB
  • Metrics.NET.SignalFX
  • Metrics.NET.InfluxDbReporting
  • Metrics.NET.CloudWatch

Application_Start:

using Metrics;

Metric.Config
.WithHttpEndpoint("http://localhost:1234/")
.WithAllCounters();

访问:http://localhost:1234/ 即可看到效果。

3. 度量

  • Meters record the rate at which an event occurs。某事件发生的比率
  • Histograms measure the distribution of values in a stream of data。数据流的分布
  • Timers keep a histogram of the duration of a type of event and a meter of the rate of its occurrence。Meters和Histograms的结合。
  • Counters 64 bit integers that can be incremented or decremented。64位计数器
  • Gauges instantaneous values。简单值

3.1 Gauges

最简单的度量方式。代表一个瞬时值。

代码片段:

// gauge from Func<double>
Metric.Gauge("MyValue", () => ComputeMagicValue(), Unit.Items); // gauge that reads its value from a performance counter
Metric.PerformanceCounter("CPU Usage", "Processor", "% Processor Time",
"_Total", Unit.Custom("%")); // gauge that transforms the value of another gauge
Metric.Advanced.Gauge("Kbytes gauge",
() => new DerivedGauge(gaugeReturningValueInBytes, v => v / 1024.0 ),
Unit.KiloBytes); Metric.Context("[LogPool]").Gauge("dict.Count_Gauge",
() => { return dict.Count; }, Unit.Custom("個"), "log");

3.2 Counters

代表可以增減的64位整數。

代碼片段——緩存的數量

public class Cache
{
private static readonly Counter counter =
Metric.Counter("ItemsInCache", Unit.Items); private void AddItems(object[] items)
{
counter.Increment(items.Length);
} private void AddItem(object item)
{
counter.Increment();
} private void RemoveItem(object item)
{
counter.Decrement();
}
}

Counter提供分组计数的能力,针对标记接口可以实现:

public class SetCounterSample
{
private readonly Counter commandCounter =
Metric.Counter("Command Counter", Unit.Custom("Commands")); public interface Command { }
public class SendEmail : Command { }
public class ShipProduct : Command { }
public class BillCustomer : Command { }
public class MakeInvoice : Command { }
public class MarkAsPreffered : Command { } public void Process(Command command)
{
this.commandCounter.Increment(command.GetType().Name); // do actual command processing
}
}

输出:

 Command Counter
Count = 2550 Commands
Total Items = 5
Item 0 = 20.90% 533 Commands [BillCustomer]
Item 1 = 19.22% 490 Commands [MakeInvoice]
Item 2 = 19.41% 495 Commands [MarkAsPreffered]
Item 3 = 20.98% 535 Commands [SendEmail]
Item 4 = 19.49% 497 Commands [ShipProduct]

应用场景:可以用在WEB API中统计各种请求的数量。

3.3 Meters

A meter measures the rate at which an event occurs.meter测量一个事件发生的比率。

示例代码:请求异常的比率

public class RequestProcessor
{
private readonly Meter meter =
Metric.Meter("Errors", Unit.Requests, TimeUnit.Seconds); public void ProcessRequest()
{
try
{
// do actual processing
}
catch
{
meter.Mark(); // records an error
throw;
}
}
}

同样,也可以支持多态的分组:

public class SetMeterSample
{
private readonly Meter errorMeter = Metric.Meter("Errors", Unit.Errors); public interface Command { }
public class SendEmail : Command { }
public class ShipProduct : Command { }
public class BillCustomer : Command { }
public class MakeInvoice : Command { }
public class MarkAsPreffered : Command { } public void Process(Command command)
{
try
{
ActualCommandProcessing(command);
}
catch
{
errorMeter.Mark(command.GetType().Name);
}
}
}

输出:

 Errors
Count = 450 Errors
Mean Value = 35.68 Errors/s
1 Minute Rate = 25.44 Errors/s
5 Minute Rate = 24.30 Errors/s
15 Minute Rate = 24.10 Errors/s
Total Items = 5
Item 0 = 19.56% 88 Errors [BillCustomer]
Count = 88 Errors
Mean Value = 6.98 Errors/s
1 Minute Rate = 6.05 Errors/s
5 Minute Rate = 6.01 Errors/s
15 Minute Rate = 6.00 Errors/s
Item 1 = 18.67% 84 Errors [MakeInvoice]
Count = 84 Errors
Mean Value = 6.66 Errors/s
1 Minute Rate = 4.23 Errors/s
5 Minute Rate = 3.89 Errors/s
15 Minute Rate = 3.83 Errors/s
Item 2 = 20.22% 91 Errors [MarkAsPreffered]
Count = 91 Errors
Mean Value = 7.22 Errors/s
1 Minute Rate = 5.38 Errors/s
5 Minute Rate = 5.24 Errors/s
15 Minute Rate = 5.21 Errors/s
Item 3 = 19.78% 89 Errors [SendEmail]
Count = 89 Errors
Mean Value = 7.06 Errors/s
1 Minute Rate = 4.92 Errors/s
5 Minute Rate = 4.67 Errors/s
15 Minute Rate = 4.62 Errors/s
Item 4 = 21.78% 98 Errors [ShipProduct]
Count = 98 Errors
Mean Value = 7.77 Errors/s
1 Minute Rate = 4.86 Errors/s
5 Minute Rate = 4.50 Errors/s
15 Minute Rate = 4.43 Errors/s

3.4 Histograms

代码片段:搜索结果的分布。

开箱即用的三种抽样方法:

  • Exponentially Decaying Reservoir - 最近五分钟数据的分位数。
  • Uniform Reservoir - 产生整个週期有效的分位数
  • Sliding Window Reservoir - 产生代表过去N次测量的分位数
 private readonly Histogram histogram = Metric.Histogram("Search Results", Unit.Items);
public void Search(string keyword)
{
var results = ActualSearch(keyword);
histogram.Update(results.Length);
} // The histogram has the ability to track for which user value a Min, Max or Last Value has been recorded.
// The user value can be any string value (documentId, operationId, etc).
public class UserValueHistogramSample
{
private readonly Histogram histogram =
Metric.Histogram("Results", Unit.Items); public void Process(string documentId)
{
var results = GetResultsForDocument(documentId);
this.histogram.Update(results.Length, documentId);
}
}

输出:

    Results
Count = 90 Items
Last = 46.00 Items
Last User Value = document-3
Min = 2.00 Items
Min User Value = document-7
Max = 98.00 Items
Max User Value = document-4
Mean = 51.52 Items
StdDev = 30.55 Items
Median = 50.00 Items
75% <= 80.00 Items
95% <= 97.00 Items
98% <= 98.00 Items
99% <= 98.00 Items
99.9% <= 98.00 Items

3.5 Timers

示例代碼:

private readonly Timer timer =
Metric.Timer("HTTP Requests",Unit.Requests); public void ProcessRequest()
{
using(timer.NewContext())
{
// Actual Processing of the request
}
} private readonly Timer timer =
Metric.Timer("Requests", Unit.Requests); public void Process(string documentId)
{
using (var context = timer.NewContext(documentId))
{
ActualProcessingOfTheRequest(documentId); // if needed elapsed time is available in context.Elapsed
}
}

輸出:

  Requests
Count = 14 Requests
Mean Value = 1.86 Requests/s
1 Minute Rate = 1.80 Requests/s
5 Minute Rate = 1.80 Requests/s
15 Minute Rate = 1.80 Requests/s
Count = 14 Requests
Last = 869.03 ms
Last User Value = document-1
Min = 59.90 ms
Min User Value = document-6
Max = 869.03 ms
Max User Value = document-1
Mean = 531.81 ms
StdDev = 212.98 ms
Median = 594.83 ms
75% <= 670.18 ms
95% <= 869.03 ms
98% <= 869.03 ms
99% <= 869.03 ms
99.9% <= 869.03 ms

Metrics.NET实践(1)的更多相关文章

  1. Metrics.Net实践(2)在WEB中应用度量

    Gauges 可以画出Http Request执行时间的波形图: actionInfo表示MVC中的Action,即按照action类型来分组 Metric.Context(this.actionIn ...

  2. Prometheus Metrics 设计的最佳实践和应用实例,看这篇够了!

    Prometheus 是一个开源的监控解决方案,部署简单易使用,难点在于如何设计符合特定需求的 Metrics 去全面高效地反映系统实时状态,以助力故障问题的发现与定位.本文即基于最佳实践的 Metr ...

  3. metrics实践 (metrics-spring)

    这里主要介绍metrics与spring集成的使用方式. 1  添加maven依赖 <dependency> <groupId>com.ryantenney.metrics&l ...

  4. 中小研发团队架构实践之应用监控Metrics

    一.Metrics简介        应用监控系统Metrics由Metrics.NET+InfluxDB+Grafana组合而成,通过客户端Metrics.NET在业务代码中埋点,Metrics.N ...

  5. [实践] ubuntu下编译安装ambari

    ambari是一个Hadoop套件的管理工具,可以方便部署.管理及监控.最初开发时使用的就是RH系的Linux,只支持RHEL.CentOS5/6.OEL.SLES,暂不支持Ubuntu:可我的需求就 ...

  6. Python机器学习库scikit-learn实践

    原文:http://blog.csdn.net/zouxy09/article/details/48903179 一.概述 机器学习算法在近几年大数据点燃的热火熏陶下已经变得被人所“熟知”,就算不懂得 ...

  7. 图形化Cisco设备管理实践(附安装配置视频)

    图形化Cisco设备管理实践 Ciscoworks 2000是Cisco公司推出的基于SNMP协议的网络管理系统,通过它网络管理人员可以方便快捷地完成设备的配置.管理.监控和故障分析等任务, Cisc ...

  8. Spring cloud项目实践(一)

    链接地址:http://sail-y.github.io/2016/03/21/Spring-cloud%E9%A1%B9%E7%9B%AE%E5%AE%9E%E8%B7%B5/ 什么是Spring ...

  9. Dropbox可伸缩性设计最佳实践分享

    http://www.infoq.com/cn/news/2012/11/dropbox-scale-bestpractice Dropbox的运维工程师Rajiv,跟大家分享了可伸缩性设计的最佳实践 ...

随机推荐

  1. Java& Vector与ArrayList区别

    在写java的时候,基本上都喜欢用arraylist,甚至我都不知道有个vector的存在.查了一下发现又是线程安全问题...咋个线程安全天天围着我转呢...多得阿里巴巴,让我开始认识java的所谓线 ...

  2. 深入理解JAVA I/O系列二:字节流详解

    流的概念 JAVA程序通过流来完成输入/输出.流是生产或消费信息的抽象,流通过JAVA的输入输出与物理设备链接,尽管与它们链接的物理设备不尽相同,所有流的行为具有相同的方式.这样就意味一个输入流能够抽 ...

  3. 蜗牛慢慢爬 LeetCode 6. ZigZag Conversion [Difficulty: Medium]

    题目 The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows li ...

  4. jmeter 多线程组间变量共享

    jmeter的线程组之间是相互独立的,各个线程组互不影响,所以线程组A中输出的参数,是无法直接在线程组B中被调用的. 但是有时为了方便管理,我们可能是把各个接口单独存放在不同的线程组中.拿Cookie ...

  5. VBA笔记(一)——基础配置

    开启VBA编程环境——VBE 方法一:按<Alt+F11>组合建 方法二:查看代码 宏设置 当然启用宏的设置方式不同,宏的启动方式也不一样. 首先打开“office 按钮”,选择“exce ...

  6. p2 碰撞

    P2可以实现物体碰撞模拟,同时在碰撞过程中派发一些事件实现碰撞检测,将碰撞信息及时反馈,以添加相应的特效. P2中,当两个刚体的最小包围盒AABB发生重叠,碰撞就开始了:然后刚体的形状发生重叠,同时P ...

  7. CF235C_Cyclical Quest

    很好的一个自动机的题目. 给原串,和若干个询问串.求原串里有多少个不同子串可以通过询问串循环移动得到. 有点类似求两个串的lcs,但是灵活一点. 首先我们把询问串长度扩大一倍,去掉最后一个字符.因为最 ...

  8. Qt——用于表格QTableView的模型

    如果想使用表格来呈现数据,Qt提供了一个方便的部件QTableWidget,但是直接用它实现一些功能可能比较困难.这里将介绍一种强大.灵活的方式来操作表格. 一.模型/视图架构 在这个架构中,模型用于 ...

  9. Spring面试,IoC和AOP的理解, @Transactional原理及使用

    spring 的优点?1.降低了组件之间的耦合性 ,实现了软件各层之间的解耦 2.可以使用容易提供的众多服务,如事务管理,消息服务等 3.容器提供单例模式支持 4.容器提供了AOP技术,利用它很容易实 ...

  10. java的break跳出多层循环

    记得大一的时候,语言学的不好,碰到了需要跳出双层循环的时候,就没有了办法.因为老师讲了goto然后说不要用goto...  自己就一直感觉这种跳出多层循环的想法是不可取的(好蠢) 下面用java代码的 ...