题目:

利用递归算法输出正整数和为n的所有不增的正整数和式。例如当n=5时,不增的和式如下:

5=5

5=4+1

5=3+2

5=3+1+1

5=2+2+1

5=2+1+1+1

5=1+1+1+1+1

解题思路:

形如这种求子集的问题都可以采用回溯法来解决,回溯法即一种加上剪枝判断的递归算法。

解决问题的关键词:不增

代码实现:

数组a用来保存分解出来的和数,即某个分解的集合

sum表示需要分解的数

k表示要分解的第k个和数

#include <iostream>
#include <stdio.h> using namespace std; #define N 100 void subSetOfSumN(int a[],int sum,int k){
for(int i=sum;i>=;i--){
if(i<=a[k-]){
a[k]=i;
if(i==sum){
printf("%d=%d",a[],a[]);
for(int p=;p<=k;p++)
printf("+%d",a[p]);
printf("\n");
}
else
subSetOfSumN(a,sum-i,k+);
}
}
} int main()
{
int n,a[N];
printf("Please input an integer n(1<=n<=20):");
scanf("%d",&n);
a[]=n;
printf("The result of nonDescend integer factorization is:\n");
subSetOfSumN(a,n,);
return ;
}

(回溯法)和为n的所有不增正整数和式分解算法的更多相关文章

  1. 回溯法解决N皇后问题(以四皇后为例)

    以4皇后为例,其他的N皇后问题以此类推.所谓4皇后问题就是求解如何在4×4的棋盘上无冲突的摆放4个皇后棋子.在国际象棋中,皇后的移动方式为横竖交叉的,因此在任意一个皇后所在位置的水平.竖直.以及45度 ...

  2. leetcode_401_Binary Watch_回溯法_java实现

    题目: A binary watch has 4 LEDs on the top which represent the hours (0-11), and the 6 LEDs on the bot ...

  3. uva216 c++回溯法

    因为题目要求最多8台电脑,所以可以枚举全排列,然后依次计算距离进行比较,枚举量8!=40320并不大,但这种方法不如回溯法好,当数据再大一些枚举就显得笨拙了,所以这个题我用回溯法做的,回溯有一个好处是 ...

  4. UVa 129 (回溯法) Krypton Factor

    回溯法确实不是很好理解掌握的,学习紫书的代码细细体会. #include <cstdio> ]; int n, L, cnt; int dfs(int cur) { if(cnt++ == ...

  5. 实现n皇后问题(回溯法)

    /*======================================== 功能:实现n皇后问题,这里实现4皇后问题 算法:回溯法 ============================= ...

  6. UVA - 524 Prime Ring Problem(dfs回溯法)

    UVA - 524 Prime Ring Problem Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & % ...

  7. HDU 2553 n皇后问题(回溯法)

     DFS Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u   Description ...

  8. HDU 1016 Prime Ring Problem (回溯法)

    Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  9. 八皇后问题-回溯法(MATLAB)

    原创文章,转载请注明:八皇后问题-回溯法(MATLAB) By Lucio.Yang 1.问题描述 八皇后问题是十九世纪著名数学家高斯于1850年提出的.问题是:在8*8的棋盘上摆放8个皇后,使其不能 ...

随机推荐

  1. Educational Codeforces Round 44 (Rated for Div. 2)

    题目链接:https://codeforces.com/contest/985 ’A.Chess Placing 题意:给了一维的一个棋盘,共有n(n必为偶数)个格子.棋盘上是黑白相间的.现在棋盘上有 ...

  2. sgu 261

    学习了元根的一些知识,哈哈. 总结一下: 几个概念: 阶:对于模数m和整数a,并且gcd(m,a)==1,那么定义a在模m下的阶r为满足ar=1 mod m的最小正整数. 性质1:r in [1,ph ...

  3. Codeforces Round #358 (Div. 2) E. Alyona and Triangles 随机化

    E. Alyona and Triangles 题目连接: http://codeforces.com/contest/682/problem/E Description You are given ...

  4. OPENCV----在APP性能测试中的应用(一)

    应用项目:  APP的性能测试 应用场景:  APP启动速度  视频开播速度 加载速度  等~~ 缘来:  基于APP日志和UiAutomator的测试方案,测试结果不能直白且精确的反应,用户的体验 ...

  5. Git_创建标签

    在Git中打标签非常简单,首先,切换到需要打标签的分支上: $ git branch * dev master $ git checkout master Switched to branch 'ma ...

  6. PowerDesigner导出表为Excel(转)

    打开脚本运行器Ctrl+Shift+X 导出: '*************************************************************************** ...

  7. How far away ?(DFS)

    How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  8. Window 8 启用 Telnet 命令工具一览图

    Window 8 启用 Telnet 命令工具一览图 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业用途-保持一致"创 ...

  9. [MySql]windows下设置mysql默认编码

    摘要 在安装好mysql的时候,如果新建数据库或者表默认的编码为latin1,如果这时候插入中文时,出出现类似下面的乱码的问题. SQLException: Incorrect string valu ...

  10. C#引用类型转换的几种方式

    本篇体验引用类型转换:子类转换成父类,父类转换成子类,以及不是子父级关系类之间的转换. □ 隐式转换:子类转换成父类 public class Animal { public int _age; pu ...