Language:
Default
Power Network
Time Limit: 2000MS   Memory Limit: 32768K
Total Submissions: 23407   Accepted: 12267

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount
0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power
transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of
Con. 




An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y.
The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6. 

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets
(u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set
ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can
occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second
data set encodes the network from figure 1.

Source

题意:在一个电力网中有n个节点,当中有np个发电站。nc个消耗点。剩下的为中转站,m条电缆。当中仅仅有发电站发电,每一个发电站所能发电的最大值已知。仅仅有消耗点消耗电,每一个消耗点消耗的最大值已知。中转站即不消耗也不发电。

每条电缆都有个传送电力的限制。为该网络所能消耗的最大电力。

思路:设一个源s和一个汇t,最后把源s和发电厂连接,边的容量为发电厂的容量,将用户与汇t连接,容量为用户的容量。

这是我做的第一个网络流,今天 看了一天。最终懂了一点。

代码:

//最短增广路算法(SAP)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define maxn 1005
#define MAXN 2005
#define mod 1000000009
#define INF 0x3f3f3f3f
#define pi acos(-1.0)
#define eps 1e-6
typedef long long ll;
using namespace std; int d[maxn];
int mp[maxn][maxn];
int num[maxn];
int pre[maxn];
int n,m,s,t,np,nc; void init()
{
int k;
queue<int>Q;
memset(d,INF,sizeof(d));
memset(num,0,sizeof(num));
d[t]=0;
num[0]=1;
Q.push(t);
while (!Q.empty())
{
k=Q.front();
Q.pop();
for (int i=0;i<n;i++)
{
if (d[i]>=n&&mp[i][k]>0)
{
d[i]=d[k]+1;
Q.push(i);
num[d[i]]++;
}
}
}
} int findAlowFlow(int i)
{
int j;
for (j=0;j<n;j++)
if (mp[i][j]>0&&d[i]==d[j]+1)
return j;
return -1;
} int reLable(int i)
{
int mm=INF;
for (int j=0;j<n;j++)
if (mp[i][j]>0)
mm=min(mm,d[j]+1);
return mm==INF?n:mm;
} int maxFlow(int s,int t)
{
int flow=0,i=s,j;
int delta;
memset(pre,-1,sizeof(pre));
while (d[s]<n)
{
j=findAlowFlow(i);
if (j>=0)
{
pre[j]=i;
i=j;
if (i==t)
{
delta=INF;
for (i=t;i!=s;i=pre[i])
delta=min(delta,mp[pre[i]][i]);
for (i=t;i!=s;i=pre[i])
mp[pre[i]][i]-=delta,mp[i][pre[i]]+=delta;
flow+=delta;
}
}
else
{
int x=reLable(i);
num[x]++;
num[d[i]]--;
if (num[d[i]]==0)
return flow;
d[i]=x;
if (i!=s)
i=pre[i];
}
}
return flow;
} int main()
{
while (scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
{
int u,v,w;
memset(mp,0,sizeof(mp));
for (int i=0;i<m;i++)
{
scanf(" (%d,%d)%d",&u,&v,&w);
mp[u][v]=w;
}
for (int i=0;i<np;i++)
{
scanf(" (%d)%d",&u,&w);
mp[n][u]=w;
}
for (int i=0;i<nc;i++)
{
scanf(" (%d)%d",&u,&w);
mp[u][n+1]=w;
}
s=n;
t=n+1;
n=n+2;
// printf("n=%d\n",n);
init();
printf("%d\n",maxFlow(s,t));
}
return 0;
}

一般增广路算法(EK)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define maxn 1005
#define MAXN 2005
#define mod 1000000009
#define INF 0x3f3f3f3f
#define pi acos(-1.0)
#define eps 1e-6
typedef long long ll;
using namespace std; bool used[maxn];
int pre[maxn];
int mp[maxn][maxn];
int n,np,nc,m; int ford()
{
int i,res=0,now,mi;
queue<int>Q;
while (1)
{
memset(pre,-1,sizeof(pre));
memset(used,0,sizeof(used));
while (!Q.empty())
Q.pop();
Q.push(0);
used[0]=true;
while (!Q.empty())
{
now=Q.front();
Q.pop();
if (now==n)
break;
for (i=0;i<=n;i++)
{
if (!used[i]&&mp[now][i]>0)
{
pre[i]=now;
used[i]=true;
Q.push(i);
}
}
}
if (!used[n])
break;
mi=INF;
for (i=n;i!=0;i=pre[i])
if (mp[pre[i]][i]<mi)
mi=mp[pre[i]][i];
res+=mi;
for (i=n;i!=0;i=pre[i])
{
mp[pre[i]][i]-=mi;
mp[i][pre[i]]+=mi;
}
}
return res;
} int main()
{
while (scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
{
int u,v,w;
memset(mp,0,sizeof(mp));
for (int i=0;i<m;i++)
{
scanf(" (%d,%d)%d",&u,&v,&w);
mp[u+1][v+1]=w;
}
for (int i=0;i<np;i++)
{
scanf(" (%d)%d",&u,&w);
mp[0][u+1]=w;
}
for (int i=0;i<nc;i++)
{
scanf(" (%d)%d",&u,&w);
mp[u+1][n+1]=w;
}
n=n+1;
// printf("n=%d\n",n);
printf("%d\n",ford());
}
return 0;
}

Power Network (poj 1459 网络流)的更多相关文章

  1. Power Network POJ - 1459 [网络流模板]

    http://poj.org/problem?id=1459 嗯,网络流模板...多源点多汇点的图,超级汇点连发电厂,用户连接超级汇点 Status Accepted Time 391ms Memor ...

  2. Power Network POJ - 1459 网络流 DInic 模板

    #include<cstring> #include<cstdio> #define FOR(i,f_start,f_end) for(int i=f_startl;i< ...

  3. Power Network - poj 1459 (最大流 Edmonds-Karp算法)

      Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 24788   Accepted: 12922 Description A ...

  4. F - Power Network - poj 1459(简单最大流)

    题目大意:题目说了一大堆,其实都是废话......让人有些不知所云,其实就是给了一些电厂,和一些消费点,然后里面有一些路线什么的,求出消费点可以最多消费的电量是多少. 输入大意: 分析:懂了题意就是一 ...

  5. F - Power Network POJ - 1459

    题目链接:https://vjudge.net/contest/299467#problem/F 这个是一个很简单的题目,但是读入很有意思,通过这个题目,我学会了一种新的读入方式. 一个旧的是(%d, ...

  6. poj 1459 Power Network : 最大网络流 dinic算法实现

    点击打开链接 Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 20903   Accepted:  ...

  7. poj 1459 网络流问题`EK

    Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 24930   Accepted: 12986 D ...

  8. poj 1459(网络流)

    Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 26688   Accepted: 13874 D ...

  9. POJ 1459 网络流 EK算法

    题意: 2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20 2 1 1 2 表示 共有2个节点,生产能量的点1个,消耗能量的点1个, 传递能量的通道2条:(0,1)20 (1,0) ...

随机推荐

  1. pygame系列_pygame安装

    在接下来的blog中,会有一系列的文章来介绍关于pygame的内容,所以把标题设置为pygame系列 在这篇blog中,主要描述一下我们怎样来安装pygame 可能很多人像我一样,发现了pygame是 ...

  2. python开发_thread_布朗运动

    这篇blog是非常有趣的,是的,他非常有趣 下面我将给大家介绍有关python中thread来实现布朗运动的一个例子 下面是运行效果: ================================ ...

  3. ActiveMQ Cluster (ActiveMQ 集群) 配置

    构建高可用的ActiveMQ系统在生产环境中是非常重要的,对于这个apache的消息中间件实现高可用非常简单,只要在Apache ActiveMQ单点基本配置基础上做一次配置变更(如果在一台设备上部署 ...

  4. Redis_常见JedisConnectionException异常分析

    最近项目开发中用到了Redis, 选择了官网推荐的java client Jedis.Redis常用命令学习:http://redis.io/commandsRedis官方推荐Java客户端Jedis ...

  5. Unity3D中的UnitySendMessage方法的使用

    UnitySendMessage(“string”,“string”, ***),这是方法,我们至少需要传入两个参数,第一个参数为unity中的一个gameobject名称,第二个参数为这个gameo ...

  6. [置顶] iOS中让省略号垂直居中

    在显示等待框时,一般要求在提示信息后面加个省略号,但中文输入法下输入的省略号是在底部对齐,但中 文的习惯是省略号垂直居中对齐,最后找到下面这个方法来显示垂直居中的省略号: 中文和英文输入法下一样: o ...

  7. WordPress Permissions Update Error [RESOLVED]

    Recently I ran into an issue where an installation of WordPress that had never had any issues updati ...

  8. GoodSync 同步 对比 备份

    单向/双向皆可,针对任何一侧的文件进行处理,两侧文件都进行更新 文件同步 的操作过程是:确保两处或多处包含完全一致.及时更新 的各种文件.当对某一处进行文件添加.更改或删除,则同步操作将对对应的 另一 ...

  9. docker 图解学习

    http://www.cnblogs.com/bethal/tag/docker/  

  10. StringBuilder和StringBuffer解析(百度面试题优化须要用到的)

    StringBuilder是java5及以后提供的API,它不是线程安全的,而StringBuffer是java1.4曾经的API,它是线程安全的,所以说StringBuilder的效率更高一些,今天 ...