版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/。未经本作者同意不得转载。

https://blog.csdn.net/kenden23/article/details/26821635

寻找图中最小连通的路径,图例如以下:

算法步骤:

1. Sort all the edges in non-decreasing order of their weight.

2. Pick the smallest edge. Check if it forms a cycle with the spanning tree
formed so far. If cycle is not formed, include this edge. Else, discard it. 3. Repeat step#2 until there are (V-1) edges in the spanning tree.

关键是第二步难,这里使用Union Find来解决,能够差点儿小于O(lgn)的时间效率来推断是否须要推断的顶点和已经选择的顶点成环。

正由于这步,使得原本简单的贪心法。变得不那么简单了。

这样本算法的时间效率达到:max(O(ElogE) , O(ElogV))

原文參考:http://www.geeksforgeeks.org/greedy-algorithms-set-2-kruskals-minimum-spanning-tree-mst/

#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <string.h> class KruskalsMST
{
struct Edge
{
int src, des, weight;
}; static int cmp(const void *a, const void *b)
{
Edge *a1 = (Edge *) a, *b1 = (Edge *) b;
return a1->weight - b1->weight;
} struct Graph
{
int V, E;
Edge *edges;
Graph(int v, int e) : V(v), E(e)
{
edges = new Edge[e];
}
virtual ~Graph()
{
if (edges) delete [] edges;
}
}; struct SubSet
{
int parent, rank;
}; int find(SubSet *subs, int i)
{
if (subs[i].parent != i)
subs[i].parent = find(subs, subs[i].parent);
return subs[i].parent;
} void UnionTwo(SubSet *subs, int x, int y)
{
int xroot = find(subs, x);
int yroot = find(subs, y);
if (subs[xroot].rank < subs[yroot].rank)
subs[xroot].parent = yroot;
else if (subs[xroot].rank > subs[yroot].rank)
subs[yroot].parent = xroot;
else
{
subs[xroot].rank++;
subs[yroot].parent = xroot;
}
} Graph *graph;
Edge *res;
SubSet *subs; void initSubSet()
{
subs = new SubSet[graph->V];
for (int i = 0; i < graph->V; i++)
{
subs[i].parent = i;
subs[i].rank = 0;
}
} void mst()
{
res = new Edge[graph->V-1]; qsort(graph->edges, graph->E, sizeof(graph->edges[0]), cmp); initSubSet(); for (int e = 0, i = 0; e < graph->V - 1 && i < graph->E; i++)
{
Edge nextEdge = graph->edges[i];
int x = find(subs, nextEdge.src);
int y = find(subs, nextEdge.des);
if (x != y)
{
res[e++] = nextEdge;
UnionTwo(subs, x, y);
}
}
} void printResult()
{
printf("Following are the edges in the constructed MST\n");
for (int i = 0; i < graph->V-1; ++i)
printf("%d -- %d == %d\n", res[i].src, res[i].des, res[i].weight);
}
public:
KruskalsMST()
{
/* Let us create following weighted graph
10
0--------1
| \ |
6| 5\ |15
| \ |
2--------3
4 */
int V = 4; // Number of vertices in graph
int E = 5; // Number of edges in graph
graph = new Graph(V, E); // add edge 0-1
graph->edges[0].src = 0;
graph->edges[0].des = 1;
graph->edges[0].weight = 10; // add edges 0-2
graph->edges[1].src = 0;
graph->edges[1].des = 2;
graph->edges[1].weight = 6; // add edges 0-3
graph->edges[2].src = 0;
graph->edges[2].des = 3;
graph->edges[2].weight = 5; // add edges 1-3
graph->edges[3].src = 1;
graph->edges[3].des = 3;
graph->edges[3].weight = 15; // add edges 2-3
graph->edges[4].src = 2;
graph->edges[4].des = 3;
graph->edges[4].weight = 4; mst();
printResult();
}
~KruskalsMST()
{
if (res) delete [] res;
if (subs) delete [] subs;
if (graph) delete graph;
}
};

Geeks : Kruskal’s Minimum Spanning Tree Algorithm 最小生成树的更多相关文章

  1. MST(Kruskal’s Minimum Spanning Tree Algorithm)

    You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...

  2. 【HDU 4408】Minimum Spanning Tree(最小生成树计数)

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  3. 说说最小生成树(Minimum Spanning Tree)

    minimum spanning tree(MST) 最小生成树是连通无向带权图的一个子图,要求 能够连接图中的所有顶点.无环.路径的权重和为所有路径中最小的. graph-cut 对图的一个切割或者 ...

  4. 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集

    最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...

  5. HDU 4408 Minimum Spanning Tree 最小生成树计数

    Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  6. 【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解

    本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情 ...

  7. 数据结构与算法分析–Minimum Spanning Tree(最小生成树)

    给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...

  8. Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  9. hdu 4408 Minimum Spanning Tree

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

随机推荐

  1. [Redis] redis数据备份恢复与持久化

    数据库备份,使用save命令,将会在redis的安装目录中生成dump.rdb 例如:在我的目录下 redis/src/dump.rdb 使用命令config get dir,获取当前redis的安装 ...

  2. Sourcetree报错: 您没有已经配置扩展集成设置的远端

    一.错误提示 您没有已经配置扩展集成设置的远端; ... 二.解决 配置 Legacy Account Settings 即可:

  3. javaweb开发之get与post请求的区别

    GET和POST是HTTP请求的两种基本方法,要说它们的区别,接触过WEB开发的人都能说出一二. 最直观的区别就是GET把参数包含在URL中,POST通过request body传递参数. 你可能自己 ...

  4. 对工厂方法模式的一些思考(java语法表示)

    同为创造型设计模式的简单工厂模式可以理解为对new关键字的代替. 本着重复三次即重构的原则,如果一个对象在不同的地方被new了两次以上,那就可以考虑使用它.那我们为什么要用简单工厂模式代替new呢?就 ...

  5. c# 后台异步请求接口

    第一步:引用程序集:Systen.Net.Http 第一种方式: 异步 Get请求 HttpClient client = new HttpClient();            //client. ...

  6. Java 之常用API(二)

    Object类 & System类 日期相关类 包装类 & 正则表达式 Object类 & System类 1.1 Object类 1.1.1 概述 Object类是Java语 ...

  7. 精华阅读第 12 期 | 最新 App Store 审核指南与10大被拒理由?

    很多时候,我们对技术的追求是没有止境的,我们需要不断的学习,进步,再学习,再进步!本文系移动精英开发俱乐部的第12期文章推荐阅读整理,其中涉及到了 Android 数据库框架,架构设计中的循环引用,同 ...

  8. SASS 入门

    为什么使用Sass 作为前端(html.javascript.css)的三大马车之一的css,一直以静态语言存在,HTML5火遍大江南北了.javascript由于NODE.JS而成为目前前后端统一开 ...

  9. 从.net角度分析 异步和多线程

    线程 进程 CPU目前都是多核心的,相当于一个大脑几块可以同时工作. 超线程CPU是指在一块CPU中,用虚拟方法将一个物理核心模拟成多个核心(如:一个单物理核心,模拟成二个核心,即所谓的二线程.)只有 ...

  10. [C# | WinCE | Solution] 在 WinCE 上访问 SSL 加密后的 WCF SOAP 服务接口出现“未能与远程服务器建立信任关系”

    Scenario: 服务器的 SOAP 使用了 GeoTrust 签名的 EV 证书,WinCE调用时出现“未能与远程服务器建立信任关系”的错误.原因是该 WinCE 设备信任的证书包括 Global ...