Description

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个
操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

Input

第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1 
行每行三个正整数 fr, to , 表示该树中存在一条边 (fr, to) 。再接下来 M 行,每行分别表示一次操作。其中
第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。

Output

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

Sample Input

5 5
1 2 3 4 5
1 2
1 4
2 3
2 5
3 3
1 2 1
3 5
2 1 2
3 3

Sample Output

6
9
13

HINT

对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不会超过 10^6 。

一道裸的树剖却因为建树时候的sb错误搞了半天
不想说什么(不过这个题好像会炸int)

 #include<iostream>
#include<cstdio>
#include<cstring>
#define LL long long
#define MAXN (100000+50)
using namespace std;
LL Tree[MAXN];
LL T_num[MAXN];
LL Depth[MAXN];
LL Father[MAXN];
LL Sum[MAXN];
LL Son[MAXN];
LL Top[MAXN];
LL a[MAXN];
LL n,m,u,v,sum;
LL head[MAXN],num_edge;
struct node1
{
LL val;
LL add;
} Segt[MAXN*];
struct node2
{
LL to;
LL next;
} edge[MAXN*];
void add(LL u,LL v)
{
edge[++num_edge].to=v;
edge[num_edge].next=head[u];
head[u]=num_edge;
} void Dfs1(LL x)
{
Sum[x]=;
Depth[x]=Depth[Father[x]]+;
for (LL i=head[x]; i!=; i=edge[i].next)
if (edge[i].to!=Father[x])
{
Father[edge[i].to]=x;
Dfs1(edge[i].to);
Sum[x]+=Sum[edge[i].to];
if (Son[x]== || (Sum[Son[x]]<Sum[edge[i].to]))
Son[x]=edge[i].to;
}
} void Dfs2(LL x,LL tp)
{
T_num[x]=++sum;
Tree[sum]=a[x];
Top[x]=tp;
if (Son[x])
Dfs2(Son[x],tp);
for (LL i=head[x]; i!=; i=edge[i].next)
if (edge[i].to!=Son[x] && edge[i].to!=Father[x])
Dfs2(edge[i].to,edge[i].to);
} void Pushdown(LL node,LL l,LL r)
{
if (Segt[node].add!=)
{
LL mid=(l+r)/;
Segt[node*].val+=Segt[node].add*(mid-l+);
Segt[node*+].val+=Segt[node].add*(r-mid);
Segt[node*].add+=Segt[node].add;
Segt[node*+].add+=Segt[node].add;
Segt[node].add=;
}
} void Build(LL node,LL l,LL r)
{
if (l==r)
Segt[node].val=Tree[l];
else
{
LL mid=(l+r)/;
Build(node*,l,mid);
Build(node*+,mid+,r);
Segt[node].val=Segt[node*].val+Segt[node*+].val;
}
} void Update(LL node,LL l,LL r,LL l1,LL r1,LL k)
{
if (l>r1 || r<l1)
return;
if (l1<=l && r<=r1)
{
Segt[node].val+=(r-l+)*k;
Segt[node].add+=k;
return;
}
Pushdown(node,l,r);
LL mid=(l+r)/;
Update(node*,l,mid,l1,r1,k);
Update(node*+,mid+,r,l1,r1,k);
Segt[node].val=Segt[node*].val+Segt[node*+].val;
} LL Query(LL node,LL l,LL r,LL l1,LL r1)
{
if (l>r1 || r<l1)
return ;
if (l1<=l && r<=r1)
return Segt[node].val;
Pushdown(node,l,r);
LL mid=(l+r)/;
return Query(node*,l,mid,l1,r1)+Query(node*+,mid+,r,l1,r1);
} LL Get(LL x)
{
LL ans=;
while (x!=)
{
ans+=Query(,,n,T_num[Top[x]],T_num[x]);
x=Father[Top[x]];
}
return ans;
} int main()
{
scanf("%lld%lld",&n,&m);
for (LL i=; i<=n; ++i)
scanf("%lld",&a[i]);
for (LL i=; i<=n-; ++i)
{
scanf("%lld%lld",&u,&v);
add(u,v);
add(v,u);
}
Dfs1();
Dfs2(,);
Build(,,n);
for (LL i=; i<=m; ++i)
{
LL p,x,y;
scanf("%lld",&p);
if (p==)
{
scanf("%lld%lld",&x,&y);
Update(,,n,T_num[x],T_num[x],y);
}
if (p==)
{
scanf("%lld%lld",&x,&y);
Update(,,n,T_num[x],T_num[x]+Sum[x]-,y);
}
if (p==)
{
scanf("%lld",&x);
printf("%lld\n",Get(x));
}
}
}

4034. [HAOI2015]树上操作【树链剖分】的更多相关文章

  1. bzoj 4034: [HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4352  Solved: 1387[Submit][Stat ...

  2. bzoj 4034: [HAOI2015]树上操作——树链剖分

    Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中 ...

  3. BZOJ 4034[HAOI2015]树上操作(树链剖分)

    Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点 ...

  4. bzoj4034[HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6163  Solved: 2025[Submit][Stat ...

  5. 【BZOJ4034】[HAOI2015]树上操作 树链剖分+线段树

    [BZOJ4034][HAOI2015]树上操作 Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 ...

  6. BZOJ4034 [HAOI2015]树上操作 树链剖分

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4034 题意概括 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三 ...

  7. P3178 [HAOI2015]树上操作 树链剖分

    这个题就是一道树链剖分的裸题,但是需要有一个魔性操作___编号数组需要开longlong!!!震惊!真的神奇. 题干: 题目描述 有一棵点数为 N 的树,以点 为根,且树点有边权.然后有 M 个操作, ...

  8. BZOJ4034[HAOI2015]树上操作——树链剖分+线段树

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都 ...

  9. bzoj4034 [HAOI2015]树上操作——树链剖分

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4034 树剖裸题: 一定要注意 long long !!! update 的时候别忘了 pus ...

  10. [HAOI2015]树上操作-树链剖分

    #include<bits/stdc++.h> using namespace std; const int maxn = 1e6+5; #define mid ((l+r)>> ...

随机推荐

  1. Java基础教程(11)--对象

    一.创建对象   下面的语句创建了一个对象并把它的引用赋值给了一个变量: Point originOne = new Point(23, 94);   这条语句由三部分组成(下面将详细讨论): 声明对 ...

  2. Access restriction: The type BASE64Encoder is not accessible due to restrict(转载)

    Access restriction: The type BASE64Encoder is not accessible due to restrict 2011年11月18日 20:47:06 阅读 ...

  3. django(五):cookie和session

    一.Cookie 1.cookie机制 会话(Session)跟踪是Web程序中常用的技术,用来跟踪用户的整个会话.常用的会话跟踪技术是Cookie与Session.Cookie通过在客户端记录信息确 ...

  4. Firbe Channel光纤信道

    简介 中文名:网状信道 外文名:Fibre Channel 简    称:FC 光纤信道是一种高速网络技术标准(T11),主要应用于SAN(存储局域网).其拓扑结构分为三种,点到点.仲裁循环.交换结构 ...

  5. HDU4336 Card Collector(期望 状压 MinMax容斥)

    题意 题目链接 \(N\)个物品,每次得到第\(i\)个物品的概率为\(p_i\),而且有可能什么也得不到,问期望多少次能收集到全部\(N\)个物品 Sol 最直观的做法是直接状压,设\(f[sta] ...

  6. 创建vue项目 webpack+vue

    # 全局安装 vue-cli $ npm install -g vue-cli # 创建一个基于 "webpack" 模板的新项目 根据提示填写项目信息 && 对项 ...

  7. elixir 基础数据结构

     Elixir中的一些基础的数据结构:整数,浮点数,字符串,原子,列表,元组  整数,浮点数,字符串 跟其他语言差不多  原子:名字为值的常量  在ruby类似Symbols  在erlang是用大写 ...

  8. oracle 用户系统权限

    conn sys as sysdba; create user test identified by test; grant create session to test; grant create ...

  9. Re:LieF ~親愛なるあなたへ~ 后感

    遇到烦恼就能有个安逸的地方逃避.这个想法真好.遗憾现实并不能如此.若是觉得这款纯爱作有些许的感人之处,那定时因为受众玩家正在通过玩游戏来逃避现实.“虚拟世界的感情是真实的.” 这件事在旁人看来或许是笑 ...

  10. python中的字符串编码问题——1.理解编码和解码问题

    理解编码与解码(python2.7):1)编码 是根据一个想要的编码名称,把一个字符串翻译为其原始字节形式.>>> u_str=u'字符串编码aabbbcccddd'>> ...