【转】Caffe初试(八)Blob,Layer和Net以及对应配置文件的编写
深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成。Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型。它将所有的信息数据定义为blobs,从而进行便利的操作和通讯。Blob是caffe框架中一种标准的数组,一种统一的内存接口,它详细描述了信息是如何存储的,以及如何在层之间通讯的。
1、blob
Blobs封装了运行时的数据信息,提供了CPU和GPU的同步。从数学上来说,Blob就是一个N维数组。它是caffe中的数据基本单位,就像matlab中以矩阵为基本操作对象一样。只是矩阵是二维的,而Blob是N维的。N可以是2,3,4等等。对于图片数据来说,Blob可以表示为(N*C*H*W)这样一个4D数组。其中N表示图片的数量,C表示图片的通道数,H和W分别表示图片的高度和宽度。当然,除了图片数据,Blob也可以用于非图片数据。比如传统的多层感知机,就是比较简单的全连接网络,用2D的Blob,调用innerProduct层来计算就可以了。
2、layer
层是网络模型的组成要素和计算基本单位。层的类型比较多,如Data,Convolution,Pooling,ReLUmSoftmax-loss,Accuracy等,一个层的定义大致如下图:

从bottom进行数据的输入,计算后,通过top进行输出。图中的黄色多边形表示输入输出的数据,蓝色矩形表示层。
每一种类型的层都定义为三种关键的计算:setup,forward and backword
setup:层的建立和初始化,以及在整个模型中的连接初始化。
forward:从bottom得到输入数据,进行计算,并将计算结果送到top,进行输出。
backward:从层的输出端top得到数据的梯度,计算当前层的梯度,并将计算结果送到bottom,向前传递。
3、Net
就像搭积木一样,一个net由多个layer组合而成。
现给出一个简单的2层神经网络的模型定义(加上loss层就变成三层了),先给出这个网络拓扑。

第一层:name为mnist,type为Data,没有输入(bottom),只有两个输出(top),一个为data,一个为label
第二层:name为ip,type为InnerProduct,输入数据data,输出数据ip
第三层:name为loss,type为SoftmaxWithLoss,有两个输入,一个为ip,一个为label,有一个输出loss,没有画出来。
对应的配置文件prototxt就可以这样写:
name: "LogReg"
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
data_param {
source: "input_leveldb"
batch_size: 64
}
}
layer {
name: "ip"
type: "InnerProduct"
bottom: "data"
top: "ip"
inner_product_param {
num_output: 2
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip"
bottom: "label"
top: "loss"
}
第一行将这个模型取名为LogReg,然后是三个layer的定义,参数都比较简单,只列出必须的参数。
【转】Caffe初试(八)Blob,Layer和Net以及对应配置文件的编写的更多相关文章
- Caffe学习系列(6):Blob,Layer and Net以及对应配置文件的编写
深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成.Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型.它将所有的信息数据定义为blob ...
- (Caffe)基本类Blob,Layer,Net(一)
本文地址:http://blog.csdn.net/mounty_fsc/article/details/51085654 Caffe中,Blob.Layer,Net,Solver是最为核心的类,下面 ...
- 怎样在caffe中添加layer以及caffe中triplet loss layer的实现
关于triplet loss的原理.目标函数和梯度推导在上一篇博客中已经讲过了.详细见:triplet loss原理以及梯度推导.这篇博文主要是讲caffe下实现triplet loss.编程菜鸟.假 ...
- 【caffe Blob】caffe中与Blob相关的代码注释、使用举例
首先,Blob使用的小例子(通过运行结果即可知道相关功能): #include <vector> #include <caffe/blob.hpp> #include < ...
- 【转】Caffe初试(九)solver及其设置
solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 #caffe train --solver=*_solver. ...
- caffe初试(一)happynear的caffe-windows版本的配置及遇到的问题
之前已经配置过一次caffe环境了: Caffe初试(一)win7_64bit+VS2013+Opencv2.4.10+CUDA6.5配置Caffe环境 但其中也提到,编译时,用到了cuda6.5,但 ...
- Caffe初试(三)使用caffe的cifar10网络模型训练自己的图片数据
由于我涉及一个车牌识别系统的项目,计划使用深度学习库caffe对车牌字符进行识别.刚开始接触caffe,打算先将示例中的每个网络模型都拿出来用用,当然这样暴力的使用是不会有好结果的- -||| ,所以 ...
- 如何给caffe添加新的layer ?
如何给caffe添加新的layer ? 初学caffe难免会遇到这个问题,网上搜来一段看似经典的话, 但是问题来了,貌似新版的caffe并没有上面提到的vision_layer:
- caffe(6) Blob,Layer,Net 以及对应配置文件的编写
深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成.Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型.它将所有的信息数据定义为blob ...
随机推荐
- 安装第三方RPM仓库
1.安装RepoForge源: CentOS 6.x [root@localhost /]# yum install http://pkgs.repoforge.org/rpmforge-releas ...
- Zabbix客户端安装
CentOS 7 [root@localhost /]# rpm -ivh http://repo.zabbix.com/zabbix/3.0/rhel/7/x86_64/zabbix-agent-3 ...
- HDU 4081Qin Shi Huang's National Road System(次小生成树)
题目大意: 有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点.秦始皇希望这所有n-1条路长度之和最短.然后徐福突然有冒出来,说是他有魔法,可以不用人力.财力就变 ...
- JS原生ajax与Jquery插件ajax深入学习
序言: 近来随着项目的上线实施,稍微有点空闲,闲暇之时偶然发现之前写的关于javascript原生xmlHttpRequest ajax方法以及后来jquery插件ajax方法,于是就行了一些总结,因 ...
- 学习篇:TypeCodes的2015年博客升级记
原文: https://typecodes.com/mix/2015updateblog.html 2015年博客升级记 作者:vfhky | 时间:2015-05-23 17:25 | 分类:mix ...
- svn 图标不显示
1.判断注册表里面是否有 SVN图标信息 方法:输入:win+R,输入regedit,调出注册表信息,按下Ctrl+F,在注册表里搜索"ShellIconOverlayIdentifiers ...
- git误删文件找回方法/git版本回退方法
使用git命令 git rm css/\*.css 我删掉了css文件夹下所有以.css结尾的文件,那么要怎样才能把文件找回来呢,下面说说方法,删掉其他的文件也是一样的方式找回. 第一步:使用git ...
- mysql5.x升级到mysql5.7后导入之前数据库date出错的快速解决方法【mysql低版本数据导入到高版本出错的解决方法】
mysql5.x升级至mysql5.7后导入之前数据库date出错,这是由于MySQL的sql_mode的影响,解决方法如下所示: [具体参考:mysql的sql_mode详解]修改mysql5.7的 ...
- Google地图路线规划
Google地图路线规划: 需求:给定的两点之间Google地图路径规划和详情. 代码实现: //map定义省略 var directionsDisplay = new google.maps.Dir ...
- [Data Structure] LCSs——最长公共子序列和最长公共子串
1. 什么是 LCSs? 什么是 LCSs? 好多博友看到这几个字母可能比较困惑,因为这是我自己对两个常见问题的统称,它们分别为最长公共子序列问题(Longest-Common-Subsequence ...