本文逐步介绍YOLO v1~v3的设计历程。

YOLOv1基本思想

YOLO将输入图像分成SxS个格子,若某个物体 Ground truth 的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这个物体。

每个格子预测B个bounding box及其置信度(confidence score),以及C个类别概率。bbox信息(x,y,w,h)为物体的中心位置相对格子位置的偏移及宽度和高度,均被归一化.置信度反映是否包含物体以及包含物体情况下位置的准确性,定义为\(Pr(Object)×IOU^{truth}_{pred}\),其中\(Pr(Object)∈{0,1}\)。

网络结构

YOLOv1网络借鉴了GoogLeNet分类网络结构。不同的是,YOLO未使用inception module,而是使用1x1卷积层(此处1x1卷积层的存在是为了跨通道信息整合)+3x3卷积层简单替代。

YOLOv1网络在最后使用全连接层进行类别输出,因此全连接层的输出维度是 \(S×S×(B×5+C)S×S×(B×5+C)\)。

YOLOv1网络比VGG16快(浮点数少于VGG的1/3),准确率稍差。

缺馅:

  • 输入尺寸固定:由于输出层为全连接层,因此在检测时,YOLO训练模型只支持与训练图像相同的输入分辨率。其它分辨率需要缩放成改分辨率.
  • 占比较小的目标检测效果不好.虽然每个格子可以预测B个bounding box,但是最终只选择只选择IOU最高的bounding box作为物体检测输出,即每个格子最多只预测出一个物体。当物体占画面比例较小,如图像中包含畜群或鸟群时,每个格子包含多个物体,但却只能检测出其中一个。

损失函数

YOLO全部使用了均方和误差作为loss函数.由三部分组成:坐标误差、IOU误差和分类误差。

\[loss=∑i=0s2coordErr+iouErr+clsErrloss=∑i=0s2coordErr+iouErr+clsErr
\]

简单相加时还要考虑每种loss的贡献率,YOLO给coordErr设置权重\(λ_{coord=5}\).在计算IOU误差时,包含物体的格子与不包含物体的格子,二者的IOU误差对网络loss的贡献值是不同的。若采用相同的权值,那么不包含物体的格子的confidence值近似为0,变相放大了包含物体的格子的confidence误差在计算网络参数梯度时的影响。为解决这个问题,YOLO 使用\(λ_{noobj}=0.5\)修正iouErr。(此处的‘包含’是指存在一个物体,它的中心坐标落入到格子内)。对于相等的误差值,大物体误差对检测的影响应小于小物体误差对检测的影响。这是因为,相同的位置偏差占大物体的比例远小于同等偏差占小物体的比例。YOLO将物体大小的信息项(w和h)进行求平方根来改进这个问题,但并不能完全解决这个问题。

综上,YOLO在训练过程中Loss计算如下式所示:

其中有宝盖帽子符号\((\hat{x},\hat{y},\hat{w},\hat{h},\hat{C},\hat{p})\)为预测值,无帽子的为训练标记值。\(\mathbb 1_{ij}^{obj}\)表示物体落入格子i的第j个bbox内.如果某个单元格中没有目标,则不对分类误差进行反向传播;B个bbox中与GT具有最高IoU的一个进行坐标误差的反向传播,其余不进行.

训练过程

1)预训练。使用 ImageNet 1000 类数据训练YOLO网络的前20个卷积层+1个average池化层+1个全连接层。训练图像分辨率resize到224x224。

2)用步骤1)得到的前20个卷积层网络参数来初始化YOLO模型前20个卷积层的网络参数,然后用 VOC 20 类标注数据进行YOLO模型训练。检测通常需要有细密纹理的视觉信息,所以为提高图像精度,在训练检测模型时,将输入图像分辨率从224 × 224 resize到448x448。

训练时B个bbox的ground truth设置成相同的.

与 Fast-R-CNN 对比

YOLO与Fast R-CNN相比有较大的定位误差,与基于region proposal的方法相比具有较低的召回率。但是,YOLO在定位识别背景时准确率更高,而 Fast-R-CNN 的假阳性很高。基于此作者设计了 Fast-R-CNN + YOLO 检测识别模式,即先用R-CNN提取得到一组bounding box,然后用YOLO处理图像也得到一组bounding box。对比这两组bounding box是否基本一致,如果一致就用YOLO计算得到的概率对目标分类,最终的bouding box的区域选取二者的相交区域。这种组合方式将准确率提高了3个百分点。

升级版 YOLO v2

为提高物体定位精准性和召回率,YOLO作者提出了 《YOLO9000: Better, Faster, Stronger》 (Joseph Redmon, Ali Farhadi, CVPR 2017, Best Paper Honorable Mention),相比v1提高了训练图像的分辨率;引入了faster rcnn中anchor box的思想,对网络结构的设计进行了改进,输出层使用卷积层替代YOLO的全连接层,联合使用coco物体检测标注数据和imagenet物体分类标注数据训练物体检测模型。相比YOLO,YOLO9000在识别种类、精度、速度、和定位准确性等方面都有大大提升。

YOLOv2 改进之处

YOLO与Fast R-CNN相比有较大的定位误差,与基于region proposal的方法相比具有较低的召回率。因此YOLO v2主要改进是提高召回率和定位能力。下面是改进之处:

Batch Normalization: v1中也大量用了Batch Normalization,同时在定位层后边用了dropout,v2中取消了dropout,在卷积层全部使用Batch Normalization。

高分辨率分类器:v1中使用224 × 224训练分类器网络,扩大到448用于检测网络。v2将ImageNet以448×448 的分辨率微调最初的分类网络,迭代10 epochs。

Anchor Boxes:v1中直接在卷积层之后使用全连接层预测bbox的坐标。v2借鉴Faster R-CNN的思想预测bbox的偏移.移除了全连接层,并且删掉了一个pooling层使特征的分辨率更大一些.另外调整了网络的输入(448->416)以使得位置坐标是奇数只有一个中心点(yolo使用pooling来下采样,有5个size=2,stride=2的max pooling,而卷积层没有降低大小,因此最后的特征是\(416/(2^5)=13\)).v1中每张图片预测7x7x2=98个box,而v2加上Anchor Boxes能预测超过1000个.检测结果从69.5mAP,81% recall变为69.2 mAP,88% recall.

YOLO v2对Faster R-CNN的手选先验框方法做了改进,采样k-means在训练集bbox上进行聚类产生合适的先验框.由于使用欧氏距离会使较大的bbox比小的bbox产生更大的误差,而IOU与bbox尺寸无关,因此使用IOU参与距离计算,使得通过这些anchor boxes获得好的IOU分值。距离公式:

\[D(box,centroid)=1−IOU(box,centroid)
\]

使用聚类进行选择的优势是达到相同的IOU结果时所需的anchor box数量更少,使得模型的表示能力更强,任务更容易学习.k-means算法代码实现参考:k_means_yolo.py.算法过程是:将每个bbox的宽和高相对整张图片的比例(wr,hr)进行聚类,得到k个anchor box,由于darknet代码需要配置文件中region层的anchors参数是绝对值大小,因此需要将这个比例值乘上卷积层的输出特征的大小.如输入是416x416,那么最后卷积层的特征是13x13.

细粒度特征(fine grain features):在Faster R-CNN 和 SSD 均使用了不同的feature map以适应不同尺度大小的目标.YOLOv2使用了一种不同的方法,简单添加一个 pass through layer,把浅层特征图(26x26)连接到深层特征图(连接到新加入的三个卷积核尺寸为3 * 3的卷积层最后一层的输入)。 通过叠加浅层特征图相邻特征到不同通道(而非空间位置),类似于Resnet中的identity mapping。这个方法把26x26x512的特征图叠加成13x13x2048的特征图,与原生的深层特征图相连接,使模型有了细粒度特征。此方法使得模型的性能获得了1%的提升。

Multi-Scale Training: 和YOLOv1训练时网络输入的图像尺寸固定不变不同,YOLOv2(在cfg文件中random=1时)每隔几次迭代后就会微调网络的输入尺寸。训练时每迭代10次,就会随机选择新的输入图像尺寸。因为YOLOv2的网络使用的downsamples倍率为32,所以使用32的倍数调整输入图像尺寸{320,352,…,608}。训练使用的最小的图像尺寸为320 x 320,最大的图像尺寸为608 x 608。 这使得网络可以适应多种不同尺度的输入.

YOLOv2网络结构

YOLOv2对v1的基础网络做了更改.

分类网络

YOLOv2提出了一种新的分类模型Darknet-19.借鉴了很多其它网络的设计概念.主要使用3x3卷积并在pooling之后channel数加倍(VGG);global average pooling替代全连接做预测分类,并在3x3卷积之间使用1x1卷积压缩特征表示(Network in Network);使用 batch normalization 来提高稳定性,加速收敛,对模型正则化.

Darknet-19的结构如下表:

Darknet-19-arch

包含 19 conv + 5 maxpooling.

训练:使用Darknet框架在ImageNet 1000类上训练160 epochs,学习率初始为0.1,以4级多项式衰减.weight decay=0.0005 , momentum=0.9.使用标准的数据增广方法:random crops, rotations, (hue, saturation), exposure shifts.

之后将输入从224放大至448,学习率调整为0.001,迭代10 epochs.结果达到top-1 accuracy 76.5% , top-5 accuracy 93.3%.

检测网络

在分类网络中移除最后一个1x1的层,在最后添加3个3x3x1024的卷积层,再接上输出是类别个数的1x1卷积.

对于输入图像尺寸为Si x Si,最终3x3卷积层输出的feature map是Oi x Oi(Oi=Si/(2^5)),对应输入图像的Oi x Oi个栅格,每个栅格预测#anchors种boxes大小,每个box包含4个坐标值,1个置信度和#classes个条件类别概率,所以输出维度是Oi x Oi x #anchors x (5 + #classes)

添加跨层跳跃连接(借鉴ResNet等思想),融合粗细粒度的特征:将前面最后一个3x3x512卷积的特征图,对于416x416的输入,该层输出26x26x512,直接连接到最后新加的三个3x3卷积层的最后一个的前边.将26x26x512变形为13x13x1024与后边的13x13x1024特征按channel堆起来得到13x13x3072.从yolo-voc.cfg文件可以看到,第25层为route层,逆向9层拿到第16层26 * 26 * 512的输出,并由第26层的reorg层把26 * 26 * 512 变形为13 * 13 * 2048,再有第27层的route层连接24层和26层的输出,堆叠为13 * 13 * 3072,由最后一个卷积核为3 * 3的卷积层进行跨通道的信息融合并把通道降维为1024。

训练:作者在VOC07+12以及COCO2014数据集上迭代了160 epochs,初始学习率0.001,在60和90 epochs分别减小为0.1倍.

Darknet训练VOC的参数如下:

learning_rate=0.0001
batch=64
max_batches = 45000 # 最大迭代batch数
policy=steps # 学习率衰减策略
steps=100,25000,35000 # 训练到这些batch次数时learning_rate按scale缩放
scales=10,.1,.1 # 与steps对应

网络结构如下(输入416,5个类别,5个anchor box; 此结构信息由Darknet框架启动时输出):

YOLO9000

提出了一种联合训练方法,能够容许同时使用目标检测数据集和分类数据集。使用有标记的检测数据集精确定位,使用分类数据增加类别和鲁棒性。

YOLOv3

YOLOv3在Pascal Titan X上处理608x608图像速度达到20FPS,在 COCO test-dev 上 mAP@0.5 达到 57.9%,与RetinaNet(FocalLoss论文所提出的单阶段网络)的结果相近,并且速度快4倍.

YOLO v3的模型比之前的模型复杂了不少,可以通过改变模型结构的大小来权衡速度与精度。

速度对比如下:

改进之处

  • 多尺度预测 (类FPN)
  • 更好的基础分类网络(类ResNet)和分类器

分类器-类别预测

YOLOv3不使用Softmax对每个框进行分类,主要考虑因素有两个:

  1. Softmax使得每个框分配一个类别(score最大的一个),而对于Open Images这种数据集,目标可能有重叠的类别标签,因此Softmax不适用于多标签分类。
  2. Softmax可被独立的多个logistic分类器替代,且准确率不会下降。

    分类损失采用binary cross-entropy loss.

多尺度预测

每种尺度预测3个box, anchor的设计方式仍然使用聚类,得到9个聚类中心,将其按照大小均分给3中尺度.

  • 尺度1: 在基础网络之后添加一些卷积层再输出box信息.
  • 尺度2: 从尺度1中的倒数第二层的卷积层上采样(x2)再与最后一个16x16大小的特征图相加,再次通过多个卷积后输出box信息.相比尺度1变大两倍.
  • 尺度3: 与尺度2类似,使用了32x32大小的特征图.

参见网络结构定义文件yolov3.cfg

基础网络 Darknet-53

仿ResNet, 与ResNet-101或ResNet-152准确率接近,但速度更快.对比如下:

网络结构如下:

YOLOv3在 mAP0.5mAP0.5 及小目标 APSAPS 上具有不错的结果,但随着IOU的增大,性能下降,说明YOLOv3不能很好地与ground truth切合.

边框预测

作者尝试了常规的预测方式(Faster R-CNN),然而并不奏效: x,y的偏移作为box的长宽的线性变换.

\[\begin{cases}
\widehat{G_x}=P_wt_x(P)+P_x \\
\widehat{G_y}=P_ht_y(P)+P_y \\
\widehat{G_w}=P_we^{t_w(P)} \\
\widehat{G_h}=P_he^{t_h(P)}
\end{cases}
\]

仍采用之前的logistic方式:

\[\begin{align}
b_x &= σ(t_x)+c_x \\
b_y &= σ(t_y)+c_y \\
b_w &= p_we^{t_w} \\
b_h &= p_he^{t_h}
\end{align}
\]

其中\(c_x,c_y\)是网格的坐标偏移量,\(p_w,p_h\)是预设的anchor box的边长.最终得到的边框坐标值是\(b_{x,y,w,h}\),而网络学习目标是\(t_{x,y,w,h}\).

优缺点

优点

  • 快速,pipline简单.
  • 背景误检率低。
  • 通用性强。YOLO对于艺术类作品中的物体检测同样适用。它对非自然图像物体的检测率远远高于DPM和RCNN系列检测方法。

但相比RCNN系列物体检测方法,YOLO具有以下缺点:

  • 识别物体位置精准性差。
  • 召回率低。在每个网格中预测固定数量的bbox这种约束方式减少了候选框的数量。

YOLO v.s. Faster R-CNN

  1. 统一网络:

    YOLO没有显示求取region proposal的过程。Faster R-CNN中尽管RPN与fast rcnn共享卷积层,但是在模型训练过程中,需要反复训练RPN网络和fast rcnn网络.

    相对于R-CNN系列的"看两眼"(候选框提取与分类,图示如下),YOLO只需要Look Once.
  2. YOLO统一为一个回归问题

    而R-CNN将检测结果分为两部分求解:物体类别(分类问题),物体位置即bounding box(回归问题)。


Darknet 框架

Darknet 由 C 语言和 CUDA 实现, 对GPU显存利用效率较高(CPU速度差一些, 通过与SSD的Caffe程序对比发现存在CPU较慢,GPU较快的情况). Darknet 对第三方库的依赖较少,且仅使用了少量GNU linux平台C接口,因此很容易移植到其它平台,如Windows或嵌入式设备.

参考Windows 版 Darknet (YOLOv2) 移植, 代码在此.

region层:参数anchors指定kmeans计算出来的anchor box的长宽的绝对值(与网络输入大小相关),num参数为anchor box的数量,

另外还有bias_match,classes,coords等参数.在parser.c代码中的parse_region函数中解析这些参数,并保存在region_layer.num参数保存在l.n变量中;anchors保存在l.biases数组中.region_layer的前向传播中使用for(n = 0; n < l.n; ++n)这样的语句,因此,如果在配置文件中anchors的数量大于num时,仅使用前num个,小于时内存越界.

region层的输入和输出大小与前一层(1x1 conv)的输出大小和网络的输入大小相关.

Detection层: 坐标及类别结果输出层.

yolo层: 指定anchors等信息, 计算loss等. YOLOv3使用三个yolo层作为输出.

upsample层: 上采样层, 进行2倍上采样.

region层和Detection层均是YOLOv2模型所使用的层, upsample层和yolo层在YOLOv3中使用.

鉴于 Darknet 作者率性的代码风格, 将它作为我们自己的开发框架并非是一个好的选择. 可以在我们更为熟悉的Caffe等框架中复现YOLO网络. 这里有一份Caffe版YOLOv3实现(仅部署,不能训练), 另可参照其它框架的可训练代码.


参考

原文: https://www.cnblogs.com/makefile/p/YOLOv3.html © 康行天下

MARSGGBO♥原创







2019-4-29

【转】目标检测之YOLO系列详解的更多相关文章

  1. 第三十五节,目标检测之YOLO算法详解

    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object de ...

  2. 深度学习与CV教程(13) | 目标检测 (SSD,YOLO系列)

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

  3. 目标检测 1 : 目标检测中的Anchor详解

    咸鱼了半年,年底了,把这半年做的关于目标的检测的内容总结下. 本文主要有两部分: 目标检测中的边框表示 Anchor相关的问题,R-CNN,SSD,YOLO 中的anchor 目标检测中的边框表示 目 ...

  4. 小白也能弄懂的目标检测之YOLO系列 - 第一期

    大家好,上期分享了电脑端几个免费无广告且实用的录屏软件,这期想给大家来讲解YOLO这个算法,从零基础学起,并最终学会YOLOV3的Pytorch实现,并学会自己制作数据集进行模型训练,然后用自己训练好 ...

  5. 目标检测:SSD算法详解

    一些概念   True    Predict  True postive False postive  预测为正类 False negivate True negivate  预测为负类    真实为 ...

  6. 【目标检测】RCNN算法详解

    网址: 1. https://blog.csdn.net/zijin0802034/article/details/77685438 (box regression 边框回归) 2. https:// ...

  7. 第三十六节,目标检测之yolo源码解析

    在一个月前,我就已经介绍了yolo目标检测的原理,后来也把tensorflow实现代码仔细看了一遍.但是由于这个暑假事情比较大,就一直搁浅了下来,趁今天有时间,就把源码解析一下.关于yolo目标检测的 ...

  8. QAction系列详解

    QAction系列详解 一.QAction类详解 [详细描述] QAction类提供了抽象的用户界面action,这些action可以被放置在窗口部件中.        应用程序可以通过菜单,工具栏按 ...

  9. MySQL系列详解八:MySQL多线程复制演示-技术流ken

    前言 Mysql 采用多线程进行复制是从 Mysql 5.6 开始支持的内容,但是 5.6 版本下有缺陷,虽然支持多线程,但是每个数据库只能一个线程,也就是说如果我们只有一个数据库,则主从复制时也只有 ...

随机推荐

  1. 05 Maven 生命周期和插件

    Maven 生命周期和插件 除了坐标.依赖以及仓库之外, Maven 另外两个核心概念是生命周期和插件.在有关 Maven 的日常使用中,命令行的输入往往就对应了生命周期,如 mvn package ...

  2. swift 设置string 中汉字中变色等处理代码

    我们在做弹窗 或者显示label string的时候经常会用到字体变色 变大 等特殊处理, swift中提供一个函数 NSMutableAttributedString 使用方法简介 var main ...

  3. part1:1-embeded学习心态

    遇到问题,要冷静分析问题,采用排除法,个个排除查找问题之所在!切记!在没分析完自己问题之前,别把问题所在指向他人!

  4. 2018.09.02 bzoj1025: [SCOI2009]游戏(计数dp+线筛预处理)

    传送门 要将所有置换变成一个轮换,显然轮换的周期是所有置换长度的最小公倍数. 于是我们只需要求长度不超过n,且长度最小公倍数为t的不同置换数. 而我们知道,lcm只跟所有素数的最高位有关. 因此lcm ...

  5. 2018.07.29~30 uoj#170. Picks loves segment tree VIII(线段树)

    传送门 线段树好题. 维护区间取两种最值,区间加,求区间两种历史最值,区间最小值. 自己的写法调了一个晚上+一个上午+一个下午+一个晚上并没有调出来,90" role="prese ...

  6. nginx集群tomcat,session共享问题

    tomcat-redis-session-manager版本: apache-tomcat-8.0.32.nginx-1.13.12.redis_3.2.1 github地址: https://git ...

  7. 第七章 介词(La préposition )

    法语中的介词是将两个同类或非同类的词连接在一起,把一个句中成分同另一个句子成分联系起来,并表明两者之间关系的词类.介词是一种无词性变化的词类. ★介词的形式 ()简单形式的介词,如: ()复合形式的介 ...

  8. js限制上传文件的类型和大小

    var maxsize = 6*1024*1024;//6M var errMsg = "上传的附件文件不能超过6M!!!"; var tipMsg = "您的浏览器暂不 ...

  9. POJ 1458 Common Subsequence (DP+LCS,最长公共子序列)

    题意:给定两个字符串,让你找出它们之间最长公共子序列(LCS)的长度. 析:很明显是个DP,就是LCS,一点都没变.设两个序列分别为,A1,A2,...和B1,B2..,d(i, j)表示两个字符串L ...

  10. CodeForces 611C New Year and Domino (动态规划,DP)

    题意:给定一个h*w的网格,里面只有.和#,.表示空的,#表示禁止的,然后有q个询问,询问中给你两个坐标,分别是左上和右下,求在这两者中间的有多少种(竖着和横着)两个相邻的点. 析:一看到这个题目,肯 ...