一.LongAdder原理

LongAdder类是JDK1.8新增的一个原子性操作类。AtomicLong通过CAS算法提供了非阻塞的原子性操作,相比受用阻塞算法的同步器来说性能已经很好了,但是JDK开发组并不满足于此,因为非常搞并发的请求下AtomicLong的性能是不能让人接受的。

如下AtomicLong 的incrementAndGet的代码,虽然AtomicLong使用CAS算法,但是CAS失败后还是通过无限循环的自旋锁不多的尝试,这就是高并发下CAS性能低下的原因所在。源码如下:

  public final long incrementAndGet() {
for (;;) {
long current = get();
long next = current + ;
if (compareAndSet(current, next))
return next;
}
}

在高并发下N多线程同时去操作一个变量会造成大量线程CAS失败,然后处于自旋状态,这样导致大大浪费CPU资源,降低了并发性。

既然AtomicLong性能问题是由于过多线程同时去竞争同一个变量的更新而降低的,那么如果把一个变量分解为多个变量,让同样多的线程去竞争多个资源,那么性能问题不久迎刃而解了吗?

没错,因此,JDK8 提供的LongAdder就是这个思路。下面通过图形来标示两者的不同,如下图:

如上图 AtomicLong 是多个线程同时竞争同一个变量情景。

如上图所示,LongAdder则是内部维护多个Cell变量,每个Cell里面有一个初始值为0的long型变量,在同等并发量的情况下,争夺单个变量的线程会减少,这是变相的减少了争夺共享资源的并发量,另外多个线程在争夺同一个原子变量时候,

如果失败并不是自旋CAS重试,而是尝试获取其他原子变量的锁,最后当获取当前值时候是把所有变量的值累加后再加上base的值返回的。

LongAdder维护了要给延迟初始化的原子性更新数组和一个基值变量base数组的大小保持是2的N次方大小,数组表的下标使用每个线程的hashcode值的掩码表示,数组里面的变量实体是Cell类型。

Cell 类型是Atomic的一个改进,用来减少缓存的争用,对于大多数原子操作字节填充是浪费的,因为原子操作都是无规律的分散在内存中进行的,多个原子性操作彼此之间是没有接触的,但是原子性数组元素彼此相邻存放将能经常共享缓存行,也就是伪共享。所以这在性能上是一个提升。

另外由于Cells占用内存是相对比较大的,所以一开始并不创建,而是在需要时候再创建,也就是惰性加载,当一开始没有空间时候,所有的更新都是操作base变量。

接下来进行LongAdder代码简单分析

这里我只是简单的介绍一下代码的实现,详细实现,大家可以翻看代码去研究。为了降低高并发下多线程对一个变量CAS争夺失败后大量线程会自旋而造成降低并发性能问题,LongAdder内部通过根据并发请求量来维护多个Cell元素(一个动态的Cell数组)来分担对单个变量进行争夺资源。

首先我们先看LongAdder的构造类图,如下图:

可以看到LongAdder继承自Striped64类,Striped64内部维护着三个变量,LongAdder的真实值其实就是base的值与Cell数组里面所有Cell元素值的累加,base是个基础值,默认是0,cellBusy用来实现自旋锁,当创建Cell元素或者扩容Cell数组时候用来进行线程间的同步。

接下来进去源码如看Cell的构造,源码如下:

  @sun.misc.Contended static final class Cell {
volatile long value;
Cell(long x) { value = x; }
final boolean cas(long cmp, long val) {
return UNSAFE.compareAndSwapLong(this, valueOffset, cmp, val);
} // Unsafe 技术
private static final sun.misc.Unsafe UNSAFE;
private static final long valueOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class<?> ak = Cell.class;
valueOffset = UNSAFE.objectFieldOffset
(ak.getDeclaredField("value"));
} catch (Exception e) {
throw new Error(e);
}
}
}

正如上面的代码可以知道Cell的构造很简单,内部维护一个声明volatile的变量,这里声明为volatile是因为线程操作value变量时候没有使用锁,为了保证变量的内存可见性这里只有声明为volatile。另外这里就是先前文件所说的使用Unsafe类的方法来设置value的值

接下来进入LongAdder的源码里面去看几个重要的方法,如下:

  1.long sum() 方法:返回当前的值,内部操作是累加所有 Cell 内部的 value 的值后累加 base,如下代码,由于计算总和时候没有对 Cell 数组进行加锁,所以在累加过程中可能有其它线程对 Cell 中的值进行了修改,也有可能数组进行了扩容,所以 sum 返回的值并不是非常精确的,

返回值并不是一个调用 sum 方法时候的一个原子快照值。

  源码如下:

  

public long sum() {
Cell[] as = cells; Cell a;
long sum = base;
if (as != null) {
for (int i = ; i < as.length; ++i) {
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}

  2.void reset() 方法:重置操作,如下代码把 base 置为 0,如果 Cell 数组有元素,则元素值重置为 0。源码如下:

  

  public void reset() {
Cell[] as = cells; Cell a;
base = 0L;
if (as != null) {
for (int i = ; i < as.length; ++i) {
if ((a = as[i]) != null)
a.value = 0L;
}
}
}

  3.long sumThenReset() 方法:是sum 的改造版本,如下代码,在计算 sum 累加对应的 cell 值后,把当前 cell 的值重置为 0,base 重置为 0。 当多线程调用该方法时候会有问题,比如考虑第一个调用线程会清空 Cell 的值,后一个线程调用时候累加时候累加的都是 0 值。

  源码如下:

  

  public long sumThenReset() {
Cell[] as = cells; Cell a;
long sum = base;
base = 0L;
if (as != null) {
for (int i = ; i < as.length; ++i) {
if ((a = as[i]) != null) {
sum += a.value;
a.value = 0L;
}
}
}
return sum;
}

  4.long longValue() 等价于 sum(),源码如下:

  

    public long longValue() {
return this.sum();
}

  5.void add(long x) 累加增量 x 到原子变量,这个过程是原子性的。源码如下:

  

  public void add(long x) {
Cell[] as; long b, v; int m; Cell a;
if ((as = cells) != null || !casBase(b = base, b + x)) {//(1)
boolean uncontended = true;
if (as == null || (m = as.length - ) < ||//(2)
(a = as[getProbe() & m]) == null ||//(3)
!(uncontended = a.cas(v = a.value, v + x)))//(4)
longAccumulate(x, null, uncontended);//(5)
}
} final boolean casBase(long cmp, long val) {
return UNSAFE.compareAndSwapLong(this, BASE, cmp, val);
}

可以看到上面代码,当第一个线程A执行add时候,代码(1)会执行casBase方法,通过CAS设置base为 X, 如果成功则直接返回,这时候base的值为1。

假如多个线程同时执行add时候,同时执行到casBase则只有一个线程A成功返回,其他线程由于CAS失败执行代码(2),代码(2)是获取cells数组的长度,如果数组长度为0,则执行代码(5),否则cells长度不为0,说明cells数组有元素则执行代码(3),

代码(3)首先计算当前线程在数组中下标,然后获取当前线程对应的cell值,如果获取到则执行(4)进行CAS操作,CAS失败则执行代码(5)。

代码(5)里面是具体进行数组扩充和初始化,这个代码比较复杂,这里就不讲解了,有兴趣的可以进去看看。

二.LongAccumulator类源码分析

LongAdder类是LongAccumulator的一个特例,LongAccumulator提供了比LongAdder更强大的功能,如下构造函数,其中accumulatorFunction是一个双目运算器接口,根据输入的两个参数返回一个计算值,identity则是LongAccumulator累加器的初始值。

public LongAccumulator(LongBinaryOperator accumulatorFunction,long identity) {
this.function = accumulatorFunction;
base = this.identity = identity;
}
public interface LongBinaryOperator { //根据两个参数计算返回一个值
long applyAsLong(long left, long right);
}

上面提到LongAdder 其实就是LongAccumulator 的一个特例,调用LongAdder 相当使用下面的方式调用 LongAccumulator。

   LongAdder adder = new LongAdder();
LongAccumulator accumulator = new LongAccumulator(new LongBinaryOperator() { @Override
public long applyAsLong(long left, long right) {
return left + right;
}
}, );

LongAccumulator相比LongAdder 可以提供累加器初始非0值,后者只能默认为0,另外前者还可以指定累加规则,比如不是累加而相乘,只需要构造LongAccumulator 时候传入自定义双目运算器即可,后者则内置累加规则。

从下面代码知道LongAccumulator相比于LongAdde的不同在于casBase的时候,后者传递的是b+x,而前者则是调用了r=function.applyAsLong(b=base.x)来计算。

LongAdder类的add源码如下:

  public void add(long x) {
Cell[] as; long b, v; int m; Cell a;
if ((as = cells) != null || !casBase(b = base, b + x)) {
boolean uncontended = true;
if (as == null || (m = as.length - ) < ||
(a = as[getProbe() & m]) == null ||
!(uncontended = a.cas(v = a.value, v + x)))
longAccumulate(x, null, uncontended);
}
}

LongAccumulator的accumulate方法的源码如下:

  public void accumulate(long x) {
Cell[] as; long b, v, r; int m; Cell a;
if ((as = cells) != null ||
(r = function.applyAsLong(b = base, x)) != b && !casBase(b, r)) {
boolean uncontended = true;
if (as == null || (m = as.length - ) < ||
(a = as[getProbe() & m]) == null ||
!(uncontended =
(r = function.applyAsLong(v = a.value, x)) == v ||
a.cas(v, r)))
longAccumulate(x, function, uncontended);
}
}

另外LongAccumulator调用longAccumulate时候传递的是function,而LongAdder是null,从下面代码可以知道当fn为null,时候就是使用v+x  加法运算,这时候就等价于LongAdder,fn不为null的时候则使用传递的fn函数计算,如果fn为加法则等价于LongAdder;

else if (casBase(v = base, ((fn == null) ? v + x :fn.applyAsLong(v, x))))
   // Fall back on using base
      break;
 

Java并发编程笔记之LongAdder和LongAccumulator源码探究的更多相关文章

  1. Java并发编程笔记之读写锁 ReentrantReadWriteLock 源码分析

    我们知道在解决线程安全问题上使用 ReentrantLock 就可以,但是 ReentrantLock 是独占锁,同时只有一个线程可以获取该锁,而实际情况下会有写少读多的场景,显然 Reentrant ...

  2. Java并发编程笔记之 CountDownLatch闭锁的源码分析

    JUC 中倒数计数器 CountDownLatch 的使用与原理分析,当需要等待多个线程执行完毕后在做一件事情时候 CountDownLatch 是比调用线程的 join 方法更好的选择,CountD ...

  3. java并发编程笔记(三)——线程安全性

    java并发编程笔记(三)--线程安全性 线程安全性: ​ 当多个线程访问某个类时,不管运行时环境采用何种调度方式或者这些进程将如何交替执行,并且在主调代码中不需要任何额外的同步或协同,这个类都能表现 ...

  4. java并发编程笔记(十一)——高并发处理思路和手段

    java并发编程笔记(十一)--高并发处理思路和手段 扩容 垂直扩容(纵向扩展):提高系统部件能力 水平扩容(横向扩容):增加更多系统成员来实现 缓存 缓存特征 命中率:命中数/(命中数+没有命中数) ...

  5. java并发编程笔记(十)——HashMap与ConcurrentHashMap

    java并发编程笔记(十)--HashMap与ConcurrentHashMap HashMap参数 有两个参数影响他的性能 初始容量(默认为16) 加载因子(默认是0.75) HashMap寻址方式 ...

  6. java并发编程笔记(九)——多线程并发最佳实践

    java并发编程笔记(九)--多线程并发最佳实践 使用本地变量 使用不可变类 最小化锁的作用域范围 使用线程池Executor,而不是直接new Thread执行 宁可使用同步也不要使用线程的wait ...

  7. java并发编程笔记(八)——死锁

    java并发编程笔记(八)--死锁 死锁发生的必要条件 互斥条件 进程对分配到的资源进行排他性的使用,即在一段时间内只能由一个进程使用,如果有其他进程在请求,只能等待. 请求和保持条件 进程已经保持了 ...

  8. java并发编程笔记(七)——线程池

    java并发编程笔记(七)--线程池 new Thread弊端 每次new Thread新建对象,性能差 线程缺乏统一管理,可能无限制的新建线程,相互竞争,有可能占用过多系统资源导致死机或者OOM 缺 ...

  9. java并发编程笔记(六)——AQS

    java并发编程笔记(六)--AQS 使用了Node实现FIFO(first in first out)队列,可以用于构建锁或者其他同步装置的基础框架 利用了一个int类型表示状态 使用方法是继承 子 ...

随机推荐

  1. POJ1062不错的题——spfa倒向建图——枚举等级限制

    POJ1062 虽然是中文题目但是还是有一定几率都不准题目意思的:1.所有可能降价的措施不是降价多少钱而是降至多少钱2.等级范围:是你所走的那一条路中所有人中最好最低等级差不允许超过limit限制 思 ...

  2. Alpha阶段项目复审(小小大佬带飞队)

    Alpha阶段项目复审 小组的名字 优点 缺点,bug报告(至少140字) 最终名次(无并列) 只会嘤嘤嘤队 题材比较新颖!游戏和记单词的结合  有浏览器不兼容问题 5 GG队 样式新颖,自动导入好评 ...

  3. QTP之回放模式(ReplayType)

    QTP的回放模式有两种,如下所示: 1.  Event模式  --  事件跟踪 2.  Mouse模式 --   鼠标跟踪 Event模式就是我们平时默认用的模式,也就是事件,其实QTP的click方 ...

  4. .Net Core in Docker - 在容器内编译发布并运行

    Docker可以说是现在微服务,DevOps的基础,咱们.Net Core自然也得上Docker..Net Core发布到Docker容器的教程网上也有不少,但是今天还是想来写一写. 你搜.Net c ...

  5. 使用客户端软件向服务端php程序发送post数据,php接受三种方法

    方法一:$_POST; 方法二:$GLOBALS['HTTP_RAW_POST_DATA'],需要在php.ini开启 always_populate_raw_post_data = On: 方法三: ...

  6. Buck工作原理分析,连续模式,断续模式

    Part01:Buck电路工作原理: 图1-1 Buck电路拓扑结构 Buck电路的拓扑结构如图1-1所示: (1) input接输入电源,既直流电动势: (2) IGBT1为开关管,可以选择以全控型 ...

  7. mui关闭侧滑

    一个页面有多个webview时,其中一个可以侧滑,其它禁止侧滑 document.getElementsByClassName('mui-inner-wrap')[0].addEventListene ...

  8. ABP框架入门踩坑-使用MySQL

    使用MySQL ABP踩坑记录-目录 起因 因为我自用的服务器只是腾讯云1核1G的学生机,不方便装SQL Server,所以转而MySQL. 这里使用的MySQL版本号为 8.0. 解决方案 删除Qi ...

  9. mvc 读写txt文档

    -----------------写入内容---------------- string userfile = "UserData.txt"; StreamWriter sw = ...

  10. celery_消息队列

    http://www.cnblogs.com/wupeiqi/articles/8796552.html 一. celery 简介 Celery 是一个专注于实时处理和任务调度的分布式任务队列, 同时 ...