loj2542 「PKUWC2018」随机游走 【树形dp + 状压dp + 数学】
题目链接
题解
设\(f[i][S]\)表示从\(i\)节点出发,走完\(S\)集合中的点的期望步数
记\(de[i]\)为\(i\)的度数,\(E\)为边集,我们很容易写出状态转移方程
①若\(i \notin S\)
\]
②若\(i \in S\)
除非\(\{i\} = S\),\(f[i][S] = 0\)
否则
\]
容易发现转移到的集合\(S'\)要么是\(S\),要么是更小的集合\(S - \{i\}\)
状态数是\(O(n2^{n})\),如果我们按\(S\)逐一从小计算,计算当前\(S\)时,转移到的\(S - \{i\}\)则可以直接算出
而如果转移到当前的\(S\),这个方程则有了后效性
直接高斯消元是\(O(n^{3}2^{n})\)的,我们考虑如hdu Maze那题一样解出式子
在集合\(S\)意义下【为了方便我们就省去S这维】,记\(fa[i]\)为\(i\)的父节点,我们不妨设
\]
①若\(i \notin S\)
如果\(i\)为叶节点,那么\(A_i = B_i = 1\)
否则有
f[i] &= \frac{1}{de[i]}\sum\limits_{(i,j) \in E}(f[j][S] + 1) \\
&= \frac{1}{d[i]}f[fa[i]] + \frac{1}{de[i]}\sum_{i = fa[j]}(A_jf[i] + B_j + 1) \\
&= \frac{1}{d[i] - \sum_{i = fa[j]}A_j}f[fa[i]] + \frac{\sum_{i = fa[j]}(B_j + 1) + 1}{d[i] - \sum_{i = fa[j]}A_j}
\end{aligned}
\]
所以
\begin{aligned}
A_i &= \frac{1}{d[i] - \sum_{i = fa[j]}A_j} \\
B_i &= \frac{\sum_{i = fa[j]}(B_j + 1) + 1}{d[u] - \sum_{i = fa[j]}A_j}
\end{aligned}
\right.
\]
可以由儿子递推
②若\(i \in S\)
除非\(\{i\} = S\),此时\(A_i = B_i = 0\)
否则\(A_i = 0\),\(B_i = \frac{1}{de[i]}\sum\limits_{(i,j) \in E}(f[j][S - \{i\}] + 1)\)
计算出所有\(A_i\)和\(B_i\)后回代可得到\(f[i][S]\)
至此可以\(O(n2^n)\)预处理所有\(f[i][S]\)
然后做到\(O(1)\)回答询问
根本不需要什么minmax容斥,\(O(3^n)\)子集枚举
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 19,maxm = (1 << 19),INF = 1000000000,P = 998244353;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 1,de[maxn];
struct EDGE{int to,nxt;}ed[maxn << 1];
inline void build(int u,int v){
ed[++ne] = (EDGE){v,h[u]}; h[u] = ne;
ed[++ne] = (EDGE){u,h[v]}; h[v] = ne;
de[u]++; de[v]++;
}
inline int qpow(int a,int b){
int re = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) re = 1ll * re * a % P;
return re;
}
int in[maxn],f[maxn][maxm],nowS,n,Q,rt,maxv;
int A[maxn],B[maxn],fa[maxn];
void dfs(int u){
if (de[u] == 1 && u != rt){
if (in[u]){
A[u] = 0;
B[u] = (nowS ^ (1 << u - 1)) ? (f[fa[u]][nowS ^ (1 << u - 1)] + 1) % P : 0;
}
else A[u] = 1,B[u] = 1;
return;
}
if (in[u]){
A[u] = 0;
if (!(nowS ^ (1 << u - 1))) B[u] = 0;
else{
B[u] = 0;
int dv = qpow(de[u],P - 2),e = (nowS ^ (1 << u - 1));
Redge(u) B[u] = (B[u] + 1ll * dv * (f[to = ed[k].to][e] + 1) % P) % P;
}
Redge(u) if ((to = ed[k].to) != fa[u]){
fa[to] = u; dfs(to);
}
return;
}
int sa = 0,sb = 0;
Redge(u) if ((to = ed[k].to) != fa[u]){
fa[to] = u; dfs(to);
sa = (sa + A[to]) % P;
sb = (sb + B[to] + 1) % P;
}
int d = qpow(((de[u] - sa) % P + P) % P,P - 2);
if (u == rt) A[u] = 0,B[u] = 1ll * sb * d % P;
else A[u] = d,B[u] = 1ll * (sb + 1) % P * d % P;
}
void dfs2(int u){
if (u == rt) f[u][nowS] = B[u];
else f[u][nowS] = (1ll * A[u] * f[fa[u]][nowS] % P + B[u]) % P;
Redge(u) if ((to = ed[k].to) != fa[u]) dfs2(to);
}
int main(){
n = read(); Q = read(); rt = read(); maxv = (1 << n) - 1;
for (int i = 1; i < n; i++) build(read(),read());
REP(i,n) f[i][0] = 0;
for (nowS = 1; nowS <= maxv; nowS++){
REP(i,n) in[i] = ((nowS & (1 << i - 1)) > 0);
dfs(rt); dfs2(rt);
}
while (Q--){
int k = read(),S = 0;
while (k--) S |= (1 << (read() - 1));
printf("%d\n",f[rt][S]);
}
return 0;
}
loj2542 「PKUWC2018」随机游走 【树形dp + 状压dp + 数学】的更多相关文章
- LOJ2542. 「PKUWC2018」随机游走
LOJ2542. 「PKUWC2018」随机游走 https://loj.ac/problem/2542 分析: 为了学习最值反演而做的这道题~ \(max{S}=\sum\limits_{T\sub ...
- loj2542「PKUWC2018」随机游走
题目描述 给定一棵 nn 个结点的树,你从点 xx 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 QQ 次询问,每次询问给定一个集合 SS,求如果从 xx 出发一直随机游走,直到点集 SS ...
- LOJ2542. 「PKUWC2018」随机游走【概率期望DP+Min-Max容斥(最值反演)】
题面 思路 我们可以把到每个点的期望步数算出来取max?但是直接算显然是不行的 那就可以用Min-Max来容斥一下 设\(g_{s}\)是从x到s中任意一个点的最小步数 设\(f_{s}\)是从x到s ...
- loj2542 「PKUWC2018」随机游走 MinMax 容斥+树上高斯消元+状压 DP
题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. ...
- loj#2542. 「PKUWC2018」随机游走(MinMax容斥 期望dp)
题意 题目链接 Sol 考虑直接对询问的集合做MinMax容斥 设\(f[i][sta]\)表示从\(i\)到集合\(sta\)中任意一点的最小期望步数 按照树上高斯消元的套路,我们可以把转移写成\( ...
- 「PKUWC2018」随机游走(min-max容斥+FWT)
「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- 【LOJ2542】「PKUWC2018」随机游走
题意 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...
- LOJ #2542「PKUWC2018」随机游走
$ Min$-$Max$容斥真好用 $ PKUWC$滚粗后这题一直在$ todolist$里 今天才补掉..还要更加努力啊.. LOJ #2542 题意:给一棵不超过$ 18$个节点的树,$ 5000 ...
随机推荐
- keyup在移动端失效解决方法
keyup在移动端失效解决方法: $("#OBJ").on("input propertychange", function(){ }); 采用 input 与 ...
- GIT rebase讲解
对分支进行rebase 从master分支checkout出fork分支,并在master和fork上都进行了一些修改 现在fork分支想要及时的同步master分支上的修改,避免在已经失效的代码上继 ...
- k8s学习-资源管理
在云计算领域,资源可被分为计算资源.网络资源.存储资源三大类,也可被分别称作为计算云.网络云.存储云.在以容器为核心的云平台上,应用容器镜像也是一种资源. 一.计算资源管理 计算资源在云平台上主要指应 ...
- (一)Hyperledger Fabric 1.1安装部署-基础环境搭建
在学习和开发hyperledger fabric的时候遇到了一些坑,现将自己的一些总结和心得整理如下,以期对大家有所帮助.本次使用的宿主机环境:ubuntu,版本:Ubuntu 16.04.3 LTS ...
- fsck命令详解
基础命令学习目录首页 本文出自 “airfish2000” 博客,更多命令查看博客: http://airfish2000.blog.51cto.com/10829608/1880801 fsck ...
- 【quickhybrid】组件(自定义)API的实现
前言 前文在API规划时就已经有提到过组件API这个概念,本文将会介绍它的原理以及实现 理解组件API这个概念 quick.ui.xxx quick.page.xxx 在quick hybrid中,A ...
- TeamWork#3,Week5,Scrum Meeting 11.15
经过最近一段时间的努力,我们调整了爬虫结构,并在继续进行爬虫开发,马上可以进行新爬虫与服务器连接的测试. 成员 已完成 待完成 彭林江 基本完成爬虫结构调整 新爬虫与服务器连接 郝倩 基本完成爬虫结构 ...
- TeamWork#3,Week5,Scrum Meeting 11.9
由于经验不足和储备知识不够,最近我们的项目遇到了一些技术问题,需要对项目进行重新计划.我们总结了经验教训,找出了问题所在,明确了要补充的知识,加紧学习,将会在一周之内解决相关问题. 成员 已完成 待完 ...
- [2017BUAA软工]第1次个人作业
软工第1次个人作业 一.快速看完整部教材,列出你不懂的5-10个问题,发布在你的个人博客上. 1.文中提到"积累问题领域的知识和经验(例如:对医疗或金融行业的了解)."然而我们如何 ...
- 『编程题全队』Alpha 阶段冲刺博客Day1
『编程题全队』Alpha 阶段冲刺博客Day1 一.Alpha 阶段全组总任务 二.各个成员在 Alpha 阶段认领的任务 三.明日各个成员的任务安排 孙志威:实现基本的网络连接, 完成燃尽图模块 孙 ...