树莓派与Arduino Leonardo使用NRF24L01无线模块通信之基于RF24库 (三) 全双工通信
设计思路
Arduino Leonardo初始化为发送模式,发送完成后,立即切换为接收模式,不停的监听,收到数据后立即切换为发送模式,若超过一定时间还为接收到数据,则切换为发送模式。
树莓派初始化为接收模式,接收到数据后立即切换为发送模式,超过一定时间为接收到数据则切换为发送模式,发送数据后立即切换为接收模式。
代码实现
Arduino Leonardo代码
如下:
#include <SPI.h>
#include "RF24.h"
#include <SPI.h>
#include "RF24.h"
#include <printf.h>
/****************** User Config ***************************/
/*** Set this radio as radio number 0 or 1 ***/
bool radioNumber = ; /* Hardware configuration: Set up nRF24L01 radio on SPI bus plus pins 7 & 8 */
RF24 radio(,);
/**********************************************************/ byte addresses[][] = {"1Node","2Node"}; // Used to control whether this node is sending or receiving
bool role = ;//1表示发送模式,0表示接收模式
unsigned long start_time = micros(); //这个是我们即将建立的传输渠道编码
//!!要和另一个模块的一致
const uint64_t pipes = 0xE8E8F0F0E1LL; //这个变量会保持我们接受到的信息
//变量类型一定要和传过来的一样
//要传输的数据
unsigned long sendData = ;
unsigned long head = 0x01000000;//高8位为头标志,根据标志不同区分不同发送源,0x00为中心主节点
unsigned long receData; void setup() {
pinMode(,OUTPUT);//指示灯
Serial.begin();
printf_begin();
Serial.println(F("RF24/examples/GettingStarted")); radio.begin(); radio.setPALevel(RF24_PA_MAX);
radio.openWritingPipe(pipes); } void loop() {
Serial.print("role:");
Serial.println(role);
if(role){
unsigned long data = sendData+head;
Serial.print("Sending:");
Serial.println(data);
digitalWrite(,HIGH);
bool ok = radio.write(&data,sizeof(unsigned long)); role = ;
radio.openReadingPipe(1,pipes);
radio.startListening();
start_time = micros(); }
if(!role){
digitalWrite(,LOW);
if(radio.available()){
radio.read(&receData,sizeof(unsigned long));
Serial.print("Response:");
Serial.println(receData);
role = ;
radio.stopListening();
radio.openWritingPipe(pipes);
}else{
unsigned long end_time = micros();
if((end_time-start_time)>=){
role = ;
radio.stopListening();
radio.openWritingPipe(pipes);
}
}
} } // Loop
树莓派代码
如下:
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <string>
#include <unistd.h>
#include <RF24/RF24.h> using namespace std;
//
// Hardware configuration
// Configure the appropriate pins for your connections /****************** Raspberry Pi ***********************/ // Radio CE Pin, CSN Pin, SPI Speed
// See http://www.airspayce.com/mikem/bcm2835/group__constants.html#ga63c029bd6500167152db4e57736d0939 and the related enumerations for pin information. // Setup for GPIO 22 CE and CE0 CSN with SPI Speed @ 4Mhz
//RF24 radio(RPI_V2_GPIO_P1_22, BCM2835_SPI_CS0, BCM2835_SPI_SPEED_4MHZ); // NEW: Setup for RPi B+
//RF24 radio(RPI_BPLUS_GPIO_J8_15,RPI_BPLUS_GPIO_J8_24, BCM2835_SPI_SPEED_8MHZ); // Setup for GPIO 15 CE and CE0 CSN with SPI Speed @ 8Mhz
//RF24 radio(RPI_V2_GPIO_P1_15, RPI_V2_GPIO_P1_24, BCM2835_SPI_SPEED_8MHZ); // RPi generic:
RF24 radio(,); /*** RPi Alternate ***/
//Note: Specify SPI BUS 0 or 1 instead of CS pin number.
// See http://tmrh20.github.io/RF24/RPi.html for more information on usage //RPi Alternate, with MRAA
//RF24 radio(15,0); //RPi Alternate, with SPIDEV - Note: Edit RF24/arch/BBB/spi.cpp and set 'this->device = "/dev/spidev0.0";;' or as listed in /dev
//RF24 radio(22,0); /****************** Linux (BBB,x86,etc) ***********************/ // See http://tmrh20.github.io/RF24/pages.html for more information on usage
// See http://iotdk.intel.com/docs/master/mraa/ for more information on MRAA
// See https://www.kernel.org/doc/Documentation/spi/spidev for more information on SPIDEV // Setup for ARM(Linux) devices like BBB using spidev (default is "/dev/spidev1.0" )
//RF24 radio(115,0); //BBB Alternate, with mraa
// CE pin = (Header P9, Pin 13) = 59 = 13 + 46
//Note: Specify SPI BUS 0 or 1 instead of CS pin number.
//RF24 radio(59,0); /********** User Config *********/
// Assign a unique identifier for this node, 0 or 1
bool radioNumber = ;
bool role = ;//receive mode
unsigned long start_time=millis();
unsigned long count=;
/********************************/ // Radio pipe addresses for the 2 nodes to communicate.
const uint64_t pipes = 0xE8E8F0F0E1LL; unsigned long receData;
unsigned long respData=0x01;
unsigned long head=0x00000000;
int main(int argc, char** argv){ cout << "RF24/examples/GettingStarted/\n"; // Setup and configure rf radio
radio.begin();
// optionally, increase the delay between retries & # of retries
radio.setRetries(,);
// Dump the configuration of the rf unit for debugging
radio.printDetails(); radio.openReadingPipe(,pipes);
/***********************************/
// This simple sketch opens two pipes for these two nodes to communicate
// back and forth. radio.startListening(); cout << "Listening .... \n";
// forever loop
while ()
{
// Pong back role. Receive each packet, dump it out, and send it back
//
if(!role){
if(radio.available()){
count++;
radio.read(&receData,sizeof(unsigned long));
printf("Get Data:size(%d),count(%lu) %lu \n",sizeof(unsigned long),count,receData);
role = ;
radio.stopListening();
radio.openWritingPipe(pipes);
}else{
unsigned long end_time = millis();
if((end_time-start_time)>=){
role = ;
radio.stopListening();
radio.openWritingPipe(pipes);
}
}
}
if(role){
unsigned long data = respData + head;
radio.write(&data,sizeof(unsigned long));
printf("Send Data:size(%d),%lu \n",sizeof(unsigned long),data);
role = ;
radio.startListening();
radio.openReadingPipe(1,pipes);
start_time = millis();
} } // forever loop return ;
}
树莓派与Arduino Leonardo使用NRF24L01无线模块通信之基于RF24库 (三) 全双工通信的更多相关文章
- 树莓派与Arduino Leonardo使用NRF24L01无线模块通信之基于RF24库 (六) 树莓派查询子节点温湿度数据
nrl24l01每次只能发送4个字节,前面说到,第一个字节用于源节点,第二个字节用于目的节点.因此只剩下两个字节用于温度和湿度,一个字节只有八位,需要表示温湿度的正负数,因此每个字节的第一位表示正负符 ...
- 树莓派与Arduino Leonardo使用NRF24L01无线模块通信之基于RF24库 (五) 树莓派单子节点发送数据
本项目中各个节点和树莓派的通信不区分信道,因此如果由树莓派发送给特定节点的数据会被所有节点接收到,因此子节点可以判别该数据是否发给自己的,需要在数据的第二个字节中加入目标节点的编号(第一个字节为源节点 ...
- 树莓派与Arduino Leonardo使用NRF24L01无线模块通信之基于RF24库 (四) 树莓派单子节点查询
考虑到项目的实际需要,树莓派作为主机,应该只在需要的时候查询特定节点发送的数据,因此接收到数据后需要根据头部判断是否是自己需要的数据,如果不是继续接收数据,超过一定时间未查询到特定节点的数据,则退出程 ...
- 树莓派与Arduino Leonardo使用NRF24L01无线模块通信之基于RF24库 (二) 发送自定义数据
在我的项目里,树莓派主要作为中心节点,用于接收数据,Arduino作为子节点,用于发送数据,考虑到以后会有很多子节点,但又不至于使得代码过于繁琐,因此所有的传输数据添加一个头部编号用于区分不同节点. ...
- 树莓派与Arduino Leonardo使用NRF24L01无线模块通信之基于RF24库 (一) 配置与测试
引脚连接说明 与树莓派的连线 NRF24L01 => 树莓派 GND => GND VCC => 3.3V CE = ...
- STC8H开发(五): SPI驱动nRF24L01无线模块
目录 STC8H开发(一): 在Keil5中配置和使用FwLib_STC8封装库(图文详解) STC8H开发(二): 在Linux VSCode中配置和使用FwLib_STC8封装库(图文详解) ST ...
- nRF2401A/nRF24L01/nRF24L01+无线模块最常见问题汇集(转)
俗话说:每个人一生下来什么都会的,都是通过自己努力和探索出来的,NRF系列芯片,刚开始都好奇心加兴趣才来捣鼓它的,刚开始做硬件和软件,没有收发数据弄得整个人头都快炸开了,所以在此和大家分享一下前辈的经 ...
- nRF24L01无线模块笔记
nRF24L01模块 官网链接: https://www.nordicsemi.com/Products/nRF24-series 常见的无线收发模块, 工作在2.4GHz频段, 适合近距离遥控和数据 ...
- [51单片机] nRF24L01 无线模块 测试 按键-灯-远程控制
哈哈,穷吊死一个,自己做的一个超简单的板还没有电源提供,只得借助我的大开发板啦.其实这2个模块是完全可以分开的,无线嘛,你懂得!进入正题,这个实验的功能就是一个发送模块(大的那个板)连接4个按键,通过 ...
随机推荐
- Scrapy-从数据库取出IP并判断是否可用
import pymysql import requests conn = pymysql.connect(host="localhost",user="root&quo ...
- python执行时遇到 KeyError: b'somevar' 时需要想到的
虽然这个问题很小,但我觉得很有必要单独拿出来强调一下. 这样在遇到类似错误的时候可以很快反应过来,进而节约了时间. 这里我拿 shelve 模块举例(shelve的作用大致就是把python变量存放到 ...
- Lua 语言学习
详细讲解见菜鸟教程 Lua. 一.数据类型 -- 直接输出 print("hello") -- 全局变量 b = print(b) -- nil(空) print(type(a)) ...
- 利用IPC通道进行进程间通信(C#)
有一个解决方案,其中包括一个Windows服务和一个Windows应用程序,两者之间需要进行通信.查了下,可以使用多种方法,如Web service(适用于不同系统及跨平台情况)..NET Remot ...
- 2017-2018-2 《网络对抗技术》20155322 Exp6 信息搜集与漏洞扫描
[-= 博客目录 =-] 1-实践目标 1.1-实践介绍 1.2-实践内容 1.3-实践要求 2-实践过程 2.1-Google hacking & ZoomEye 2.2-DNS.IP信息收 ...
- 一维码UPC A简介及其解码实现(zxing-cpp)
UPC(Universal Product Code)码是最早大规模应用的条码,其特性是一种长度固定.连续性的条 码,目前主要在美国和加拿大使用,由于其应用范围广泛,故又被称万用条码. UPC码仅可 ...
- P4249 [WC2007]剪刀石头布
有一个竞赛图,要给一些边定向,求三元环最多的数量 反过来考虑最少的不是环的三个点(称为不好的环),一定有一个点有2条入边,一个点有2条出边,一个点1入边1出边 可以对每一个不好的环只记录入边为2的点, ...
- 分布式服务框架 Zookeeper — 管理分布式环境中的数据
本节本来是要介绍ZooKeeper的实现原理,但是ZooKeeper的原理比较复杂,它涉及到了paxos算法.Zab协议.通信协议等相关知识,理解起来比较抽象所以还需要借助一些应用场景,来帮我们理解. ...
- restful framework之频率组件
一.频率简介 为了控制用户对某个url请求的频率,比如,一分钟以内,只能访问三次 二.自定义频率类.自定义频率规则 自定义的逻辑 #(1)取出访问者ip # (2)判断当前ip不在访问字典里,添加进去 ...
- 利用Xilinx HLS实现LDPC译码器
1. 概述 采用Xilinx HLS快速实现的部分并行,全流水的LDPC译码器. 环境:Vivado HLS 2018.2 码字:IEEE 802.16e 2/3A 算法:Min-Sum Algori ...