题意

描述

一个二分图\((A,B)\),每个点额外有一个颜色0或者1;

匹配时,只能相同颜色的点匹配;

给出\(A\)中的颜色,问如何分配\(B\)种的颜色使得\((A,B)\)的最大匹配最小;

范围

$1 \le n , m \le 2000 \ , \ 1 \le k \le 5000 $

题解

  • 将\(A\)中的点按照标号划分为\(v_0和v_1\);

  • 将B中的点拆成\(u_0\)和\(u_1\),\(u_0\)向\(u_1\)连流量为\(1\)的边;

  • \(S\)向\(v_0\)连流量为1的边,\(v_1\)向​\(T\)连流量为​\(1\)的边;

  • \(v_0\)向原图中相连的\(u_0\)连\(inf\)边,\(u_1\)向\(v_1\)连\(inf\)边;

  • 简单说明:

  • 可以转化为一种标号使得最小点覆盖最小;

  • \(<S,v_0> \ , \ <u_0,u_1> \ , \ <v_1,T>\) 被割分别代表\(v_0,u,v_1\)被选入覆盖集;

  • 只需要说明割和合法方案等价:

  • 由于不存在一条从\(S\)到\(T\)的残量路径,所以要么\(u\)被割了,要么\(u\)两边相连的点至少一边被割了;

  • 这和合法方案的条件是等价的;

  • 所以\(ans\)=最小割;

  • 考试的时候因为当初做网络流的时候没有理解深刻并且有太久没有做了,所以没有做出来;

    #include<bits/stdc++.h>
    #define inf 0x3f3f3f3f
    using namespace std;
    const int N=10010;
    char gc(){
    static char*p1,*p2,s[1000000];
    if(p1==p2)p2=(p1=s)+fread(s,1,1000000,stdin);
    return(p1==p2)?EOF:*p1++;
    }
    int rd(){
    int x=0;char c=gc();
    while(c<'0'||c>'9')c=gc();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+c-'0',c=gc();
    return x;
    }
    int n,m,k,o,hd[N],p[N],S,T,d[N],vis[N],cur[N];
    struct Edge{int v,nt,f;}E[N<<1];
    void adde(int u,int v,int f){
    E[o]=(Edge){v,hd[u],f};hd[u]=o++;
    E[o]=(Edge){u,hd[v],0};hd[v]=o++;
    }
    bool bfs(){
    static queue<int>q;
    for(int i=S;i<=T;++i)d[i]=vis[i]=0;
    while(!q.empty())q.pop();
    d[S]=vis[S]=1;q.push(S);
    while(!q.empty()){
    int u=q.front();q.pop();
    for(int i=hd[u];~i;i=E[i].nt)if(E[i].f){
    int v=E[i].v;
    if(vis[v])continue;
    d[v]=d[u]+1;
    q.push(v);
    vis[v]=1;
    if(v==T)return true;
    }
    }
    return false;
    }
    int dfs(int u,int F){
    if(u==T||!F)return F;
    int flow=0,f;
    for(int i=cur[u];~i;i=E[i].nt){
    int v=E[cur[u]=i].v;
    if(d[v]==d[u]+1&&(f=dfs(v,min(E[i].f,F)))){
    flow+=f;F-=f;
    E[i].f-=f;E[i^1].f+=f;
    if(!F)break;
    }
    }
    return flow;
    }
    int dinic(){
    int flow=0;
    while(bfs()){
    for(int i=S;i<=T;++i)cur[i]=hd[i];
    flow+=dfs(S,inf);
    }
    return flow;
    }
    int main(){
    freopen("deadline.in","r",stdin);
    freopen("deadline.out","w",stdout);
    memset(hd,-1,sizeof(hd));
    n=rd();m=rd();k=rd();S=0;T=n+m*2+1;
    for(int i=1;i<=n;++i)if(p[i]=rd())adde(S,2*m+i,1);else adde(2*m+i,T,1);
    for(int i=1;i<=m;++i)adde(i*2-1,i*2,1);
    for(int i=1;i<=k;++i){
    int u=rd(),v=rd();
    if(p[u])adde(m*2+u,v*2-1,inf);
    else adde(v*2,m*2+u,inf);
    }
    int ans=dinic();
    cout<<ans<<endl;
    return 0;
    }

【纪中集训2019.3.23】Deadline的更多相关文章

  1. 【纪中集训2019.3.23】IOer

    题目 描述 你要在\(m\)天内,刷\(n\)道题,每天可以刷的题的数目不限: 第\(i\)天可以刷的题目的种类是\(ui+v\): 两种刷题的方案不同当且仅当某天刷题的数量不同或者依次刷题的种类不同 ...

  2. 【纪中集训2019.3.27】【集训队互测2018】小A的旅行(白)

    题目 描述 ​ \(0-n-1\)的图,满足\(n\)是\(2\)的整数次幂, $ i \to j $ 有 $ A_{i,j} $ 条路径: ​ 一条路径的愉悦值定义为起点和终点编号的\(and\)值 ...

  3. 【纪中集训2019.3.12】Mas的仙人掌

    题意: ​ 给出一棵\(n\)个点的树,需要加\(m\)条边,每条边脱落的概率为\(p_{i}\) ,求加入的边在最后形成图中仅在一个简单环上的边数的期望: \(1 \le n \ , m \le 1 ...

  4. 【纪中集训2019.3.11】Cubelia

    题目: 描述 给出长度为\(n\)的数组\(a\)和\(q\)个询问\(l,r\). 求区间\([l,r]\)的所有子区间的前缀和的最大值之和: 范围: $n \le 2 \times 10^5 , ...

  5. 【纪中集训2019.3.13】fft

    题意: 描述 一共有\(n+m\)道题,其中\(n\)道答案是\(A\),\(m\)道答案是\(B\): 你事先知道\(n和m\),问在最优情况下的期望答错次数,对\(998244353\)取模: 范 ...

  6. 【纪中集训2019.3.12】Z的礼物

    题意 已知\(a_{i} = \sum_{j=1}^{i} \{^{i} _{j} \}b_{j}\), 给出\(a_{1} 到 a_{n}\) : 求\(b_{l} 到 b_{r}\)在\(1e9+ ...

  7. 「中山纪中集训省选组D1T1」最大收益 贪心

    题目描述 给出\(N\)件单位时间任务,对于第\(i\)件任务,如果要完成该任务,需要占用\([S_i, T_i]\)间的某个时刻,且完成后会有\(V_i\)的收益.求最大收益. 澄清:一个时刻只能做 ...

  8. 纪中集训 Day 2

    今天(其实是昨天= =)早上起来发现好冷好冷啊= = 吃完饭就准备比赛了,好吧B组难度的题总有一道不知到怎么写QAQ 太弱了啊!!! 蒟蒻没人权啊QAQ 今天第4题不会写,在这里说说吧 题目的意思就是 ...

  9. 纪中集训 Day1

    今天早上起来吃饭,发现纪中伙食真的是太差了!!!什么都不热,早餐的面包还好,然后就迎来了美好的早晨= = 早上做一套题,T1T2果断秒,T3一看就是noi原题,还好看过题解会写,然后就愉快的码+Deb ...

随机推荐

  1. 根据 WBS 列新 PID 数据

    之前写过关于 菜单树的. http://www.cnblogs.com/newsea/archive/2012/08/01/2618731.html 现在在写城市树. 结构: CREATE TABLE ...

  2. TIME_WAIT 你好!

    [root@vm-10-124-66-212 ~]# netstat -an|awk -F ' ' '{print $NF}'|sort |uniq -c |sort -rn|more 5552 TI ...

  3. Xcode中的文件类型

    文件类型 Xcode中的文件类型,总共4种类型: 1 普通文件(File) 2 Group(在Xcode中就是黄色的文件夹) 3 Folder(在Xcode中就是蓝色的文件夹) 4 Framework ...

  4. Scrum立会报告+燃尽图(Final阶段第五次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2484 项目地址:https://coding.net/u/wuyy694 ...

  5. (第十一周)Beta—review阶段成员贡献分

    项目名:食物链教学工具 组名:奋斗吧兄弟 组长:黄兴 组员:李俞寰.杜桥.栾骄阳.王东涵 个人贡献分=基础分+表现分 基础分=5*5*0.5/5=2.5 成员得分如下: 成员 基础分 表现分 个人贡献 ...

  6. 项目Beta冲刺团队随笔集

    博客集如下: Beta冲刺Day1:第一天冲刺记录 Beta冲刺Day2:第二天冲刺记录 Beta冲刺Day3:第三天冲刺记录 Beta冲刺Day4:第四天冲刺记录 Beta冲刺Day5:第五天冲刺记 ...

  7. Maven教程--02设置Maven本地仓库|查看Maven中央仓库

    一:设置Maven本地仓库 Maven默认仓库的路径:~\.m2\repository,~表示我的个人文档:例如:C:\Users\Edward\.m2\repository:如下图: Maven的配 ...

  8. C++ 类之间的互相调用

    这几天做C++11的线程池时遇到了一个问题,就是类A想要调用类B的方法,而类B也想调用类A的方法 这里为了简化起见,我用更容易理解的观察者模式向大家展开陈述 观察者模式:在对象之间定义一对多的依赖,这 ...

  9. Scrum会议

    小组名称:天天向上 项目名称:连连看 成员:王森(Master) 张金生 张政 栾骄阳 时间:2016.10.18 会议内容: 已完成的内容: 张政排除连续点击Button会自动消失的Bug,张金生收 ...

  10. mysql 随机获取一条或多条数据

    若要在i ≤r≤ j 这个范围得到一个随机整数r ,需要用到表达式 FLOOR( RAND() * (j – i)+i),RLOOR()取整树部分,RAND()生成0~1的随机数.ROUND(x,n) ...