拉格朗日乘子法是一种优化算法,主要用来解决约束优化问题。他的主要思想是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有n+k个变量的无约束优化问题。

其中,利用拉格朗日乘子法主要解决的问题为:

等式的约束条件和不等式的条件约束。

拉格朗日乘子的背后的数学意义是其为约束方程梯度线性组合中每个向量的系数。

等约束条件的解决方法不在赘述。

对于非等约束条件的求解,需要满足KKT条件才能进行求解。下面对于KKT条件进行分析。

不等式约束优化问题:

得到拉格朗日乘子法的求解方程:

给出KKT条件:

实际上,为什么要给出KKT条件?这里涉及到对偶问题。

我们引入拉格朗日函数L(x,α,β)将有约束的优化问题转换为无约束的优化问题,然后对原问题的参数求导,获得使拉格朗日函数最小的拉格朗日对偶函数g(α,β),最后使得对偶函数最大的问题则成为原问题的对偶问题。(对偶函数给出了主问题最优解的下界。那么下界最大是什么,这就是主问题的对偶问题)

因此对于上面拉格朗日乘子法问题的描述表达为:

但其实是仍然个很难解决的问题,因为我们要先解决不等式约束的max问题,然后再在x上求最小值。怎么办呢?如果能把顺序换一下,先解决关于x的最小值,在解决关于α、β的不等式约束问题就好了。即,

假设原问题为p,对偶问题为d,事实上,p和d并不完全相等,此处含有一个性质:弱对偶性

即:

而他两个的差即为对偶间隙

解释:大家想一下,函数L中最大值中最小的一个总比最小值中最大的那一个要大,也就是对偶问题提供了原问题最优值的一个下界。

但是大家想,我们是想通过对偶问题求解原问题的最优解,所以只有当二者相等时才可能将原问题转化成对偶问题进行求解。当然,当满足一定条件的情况下,便有p=d。而这个条件便是 slater条件和KTT条件。

在凸优化理论中,有一个Slater定理,当这个定理满足,结合KKT条件,那么对偶间隙就会消失,就是强对偶性成立。

其中对于KKT条件的KKT因子为什么需要大于等于0不太好理解。

我的理解:如上,只有当大于等于0的时候,L的取值才能有最大值,即:

这一步才有值。

当然这个只是我个人的理解吧,理论上详细的证明参考《数值优化》-Jorge Nocedal  第12章

当然它上面的公式:

都是基于

这样一个假设,不过我们一般假设的约束条件是小于等于0,所以看上去形式有点不一样,其实道理都一样的。

拉格朗日乘子法以及KKT条件的更多相关文章

  1. 拉格朗日乘子法与KKT条件 && SVM中为什么要用对偶问题

    参考链接: 拉格朗日乘子法和KKT条件 SVM为什么要从原始问题变为对偶问题来求解 为什么要用对偶问题 写在SVM之前——凸优化与对偶问题 1. 拉格朗日乘子法与KKT条件 2. SVM 为什么要从原 ...

  2. 关于拉格朗日乘子法与KKT条件

    关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件   目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉 ...

  3. 【机器学习之数学】03 有约束的非线性优化问题——拉格朗日乘子法、KKT条件、投影法

    目录 1 将有约束问题转化为无约束问题 1.1 拉格朗日法 1.1.1 KKT条件 1.1.2 拉格朗日法更新方程 1.1.3 凸优化问题下的拉格朗日法 1.2 罚函数法 2 对梯度算法进行修改,使其 ...

  4. 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析

    SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...

  5. 装载:关于拉格朗日乘子法与KKT条件

    作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助. ...

  6. 约束优化方法之拉格朗日乘子法与KKT条件

    引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值:对于含有不等式约束的优化问题,可以转化为在满足 KKT ...

  7. 【365】拉格朗日乘子法与KKT条件说明

    参考:知乎回答 - 通过山头形象描述 参考:马同学 - 如何理解拉格朗日乘子法? 参考: 马同学 - 如何理解拉格朗日乘子法和KKT条件? 参考:拉格朗日乘数 - Wikipedia 自己总结的规律 ...

  8. 拉格朗日乘子法与KKT条件

    拉格朗日乘子法 \[min \quad f = 2x_1^2+3x_2^2+7x_3^2 \\s.t. \quad 2x_1+x_2 = 1 \\ \quad \quad \quad 2x_2+3x_ ...

  9. 机器学习——最优化问题:拉格朗日乘子法、KKT条件以及对偶问题

    1 前言 拉格朗日乘子法(Lagrange Multiplier)  和 KKT(Karush-Kuhn-Tucker)  条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等 ...

随机推荐

  1. 【leetcode 简单】 第九十五题 数字转换为十六进制数

    给定一个整数,编写一个算法将这个数转换为十六进制数.对于负整数,我们通常使用 补码运算 方法. 注意: 十六进制中所有字母(a-f)都必须是小写. 十六进制字符串中不能包含多余的前导零.如果要转化的数 ...

  2. CSS ... 文本溢出用省略号代替

    { overflow:hidden; text-overflow:ellipsis; white-space:nowrap } text-overflow 属性规定当文本溢出包含元素时发生的事情. c ...

  3. C# WebClient进行FTP服务上传文件和下载文件

    定义WebClient使用的操作类: 操作类名称WebUpDown WebClient上传文件至Ftp服务: //// <summary> /// WebClient上传文件至Ftp服务 ...

  4. 读书笔记 effective C++ Item 33 避免隐藏继承而来的名字

    1. 普通作用域中的隐藏 名字实际上和继承没有关系.有关系的是作用域.我们都知道像下面的代码: int x; // global variable void someFunc() { double x ...

  5. Shell编程学习2--命令大全

    Linux中有很多的命令,这些命令可分分为10类(具体参见[1]): 1) 文件管理; 2) 文档编辑; 3) 文件传输; 4) 磁盘管理; 5) 磁盘维护; 6) 网络通讯; 7) 系统管理; 8) ...

  6. YUI Compressor 压缩 JavaScript 原理-《转载》

    YUI Compressor 压缩 JavaScript 的内容包括: 移除注释 移除额外的空格 细微优化 标识符替换(Identifier Replacement) YUI Compressor包括 ...

  7. LeetCode699. Falling Squares

    On an infinite number line (x-axis), we drop given squares in the order they are given. The i-th squ ...

  8. 安装mysql-python报错解决办法

    报错: 按照网上的办法,安装mysql-connector-c-6.1.10-winx64.msi和MySQL-python-1.2.3.win-amd64-py2.7 .exe都不行,又源码安装My ...

  9. Linux学习笔记:ps -ef、ps aux、kill -9

    一.查看进程命令 1.ps命令 Linux中的ps命令是Process Status的缩写. ps命令用来列出系统中当前运行的那些进程. ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻 ...

  10. Oracle 提示符

    http://blog.csdn.net/wyzxg/article/details/5647905