拉格朗日乘子法以及KKT条件
拉格朗日乘子法是一种优化算法,主要用来解决约束优化问题。他的主要思想是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有n+k个变量的无约束优化问题。
其中,利用拉格朗日乘子法主要解决的问题为:
等式的约束条件和不等式的条件约束。
拉格朗日乘子的背后的数学意义是其为约束方程梯度线性组合中每个向量的系数。
等约束条件的解决方法不在赘述。
对于非等约束条件的求解,需要满足KKT条件才能进行求解。下面对于KKT条件进行分析。
不等式约束优化问题:

得到拉格朗日乘子法的求解方程:

给出KKT条件:

实际上,为什么要给出KKT条件?这里涉及到对偶问题。
我们引入拉格朗日函数L(x,α,β)将有约束的优化问题转换为无约束的优化问题,然后对原问题的参数求导,获得使拉格朗日函数最小的拉格朗日对偶函数g(α,β),最后使得对偶函数最大的问题则成为原问题的对偶问题。(对偶函数给出了主问题最优解的下界。那么下界最大是什么,这就是主问题的对偶问题)
因此对于上面拉格朗日乘子法问题的描述表达为:

但其实是仍然个很难解决的问题,因为我们要先解决不等式约束的max问题,然后再在x上求最小值。怎么办呢?如果能把顺序换一下,先解决关于x的最小值,在解决关于α、β的不等式约束问题就好了。即,

假设原问题为p,对偶问题为d,事实上,p和d并不完全相等,此处含有一个性质:弱对偶性
即:

而他两个的差即为对偶间隙
解释:大家想一下,函数L中最大值中最小的一个总比最小值中最大的那一个要大,也就是对偶问题提供了原问题最优值的一个下界。
但是大家想,我们是想通过对偶问题求解原问题的最优解,所以只有当二者相等时才可能将原问题转化成对偶问题进行求解。当然,当满足一定条件的情况下,便有p=d。而这个条件便是 slater条件和KTT条件。
在凸优化理论中,有一个Slater定理,当这个定理满足,结合KKT条件,那么对偶间隙就会消失,就是强对偶性成立。

其中对于KKT条件的KKT因子为什么需要大于等于0不太好理解。

我的理解:如上,只有当大于等于0的时候,L的取值才能有最大值,即:
这一步才有值。
当然这个只是我个人的理解吧,理论上详细的证明参考《数值优化》-Jorge Nocedal 第12章
当然它上面的公式:


都是基于

这样一个假设,不过我们一般假设的约束条件是小于等于0,所以看上去形式有点不一样,其实道理都一样的。
拉格朗日乘子法以及KKT条件的更多相关文章
- 拉格朗日乘子法与KKT条件 && SVM中为什么要用对偶问题
参考链接: 拉格朗日乘子法和KKT条件 SVM为什么要从原始问题变为对偶问题来求解 为什么要用对偶问题 写在SVM之前——凸优化与对偶问题 1. 拉格朗日乘子法与KKT条件 2. SVM 为什么要从原 ...
- 关于拉格朗日乘子法与KKT条件
关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件 目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉 ...
- 【机器学习之数学】03 有约束的非线性优化问题——拉格朗日乘子法、KKT条件、投影法
目录 1 将有约束问题转化为无约束问题 1.1 拉格朗日法 1.1.1 KKT条件 1.1.2 拉格朗日法更新方程 1.1.3 凸优化问题下的拉格朗日法 1.2 罚函数法 2 对梯度算法进行修改,使其 ...
- 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...
- 装载:关于拉格朗日乘子法与KKT条件
作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助. ...
- 约束优化方法之拉格朗日乘子法与KKT条件
引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值:对于含有不等式约束的优化问题,可以转化为在满足 KKT ...
- 【365】拉格朗日乘子法与KKT条件说明
参考:知乎回答 - 通过山头形象描述 参考:马同学 - 如何理解拉格朗日乘子法? 参考: 马同学 - 如何理解拉格朗日乘子法和KKT条件? 参考:拉格朗日乘数 - Wikipedia 自己总结的规律 ...
- 拉格朗日乘子法与KKT条件
拉格朗日乘子法 \[min \quad f = 2x_1^2+3x_2^2+7x_3^2 \\s.t. \quad 2x_1+x_2 = 1 \\ \quad \quad \quad 2x_2+3x_ ...
- 机器学习——最优化问题:拉格朗日乘子法、KKT条件以及对偶问题
1 前言 拉格朗日乘子法(Lagrange Multiplier) 和 KKT(Karush-Kuhn-Tucker) 条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等 ...
随机推荐
- 【leetcode 简单】 第七十六题 移动零
给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序. 示例: 输入: [0,1,0,3,12] 输出: [1,3,12,0,0] 说明: 必须在原数组上操作, ...
- 矩阵 matrix
传送门 注意这题时限是2s [问题描述] 有一个n × m的矩阵,你从左上角走到右下角,只能向下和向右走. 每个点上有一个重量v i,j 价值w i,j 的物品,你有一个容量为S的背包,经过一个点你可 ...
- PHP在Linux下Apache环境中执行exec,system,passthru等服务器命令函数
更多内容推荐微信公众号,欢迎关注: 若在服务器中使用php test.php运行exec,system,passthru等命令相关的脚本能成功运行,在web页面却没反应, [可能是服务器端,PHP脚本 ...
- 【译】第十篇 Integration Services:高级事件行为
本篇文章是Integration Services系列的第十篇,详细内容请参考原文. 简介在前一篇, we introduced fault tolerance by examining method ...
- Discuz x3.2七牛远程附件设置
一.DISCUZX2.5/3/3.1云存储通用接口1.1.0beta版本[8.22最新更新] 链接地址:http://www.discuz.net/thread-3399569-1-1.html 本帖 ...
- Python和MySQL数据库交互PyMySQL
Python数据库操作 对于关系型数据库的访问,Python社区已经指定了一个标准,称为Python Database API SepcificationV2.0.MySQL.Qracle等特定数据库 ...
- python并行计算(持续更新)
工作中需要对tensorflow 的一个predict结果加速,利用python中的线程池 def getPPLs(tester,datas): for line in datas: tester(l ...
- C# listView subitem 问本值 text 改变 界面会闪烁
解决方法 就是重写ListView,然后设置双缓冲即可,然后再使用DoubleBufferListView,就不会闪烁了.下面的代码是DoubleBufferListView,并使用FrmMain来测 ...
- Javascript 跨域访问解决方案 总结
在客户端编程语言中,如javascript和ActionScript,同源策略是一个很重要的安全理念,它在保证数据的安全性方面有着重要的意义.同 源策略规定跨域之间的脚本是隔离的,一个域的脚本不能访问 ...
- jersey 过滤器名称绑定的问题 NameBinding Provider
查资料也不容易查,这个问题困扰了我两天. 当没有 @Provider 的时候 过滤器不会被执行.