COGS 2221. [SDOI2016 Round1] 数字配对

http://www.cogs.pro/cogs/problem/problem.php?pid=2221

★★★   输入文件:menci_pair.in   输出文件:menci_pair.out   简单对比
时间限制:1 s   内存限制:128 MB

【题目描述】

有 n 种数字,第 i 种数字是 ai、有 bi 个,权值是 ci。

若两个数字 ai、aj 满足,ai 是 aj 的倍数,且 aiaj 是一个质数,那么这两个数字可以配对,并获得 ci×cj 的价值。

一个数字只能参与一次配对,可以不参与配对。
在获得的价值总和不小于 0 的前提下,求最多进行多少次配对。

【输入格式】

第一行一个整数 n。
第二行 n 个整数 a1、a2、……、an。
第三行 n 个整数 b1、b2、……、bn。
第四行 n 个整数 c1、c2、……、cn。

【输出格式】

一行一个数,最多进行多少次配对。

【样例输入】

3

2 4 8

2 200 7

-1 -2 1

【样例输出】

4

【提示】

测试点 1 ~ 3:n≤10,ai≤109,bi=1,∣ci∣≤105;
测试点 4 ~ 5:n≤200,ai≤109,bi≤105,ci=0;
测试点 6 ~ 10:n≤200,ai≤109,bi≤105,∣ci∣≤105。

【来源】

SDOI2016 Round1 Day1

费用流u

构图方法:(以样例为例)

1、2可以配对;2、3可以配对

注意,这里若a与b可以配对,则既要由a向b连边,又要由b向a连同样的边,最后答案除以2

原因:

1、如果只由a向b连,那么如果又有一条边由c连向a,边流量都为inf,这样从源点向a用了,由a向汇点又用了,应该统计的是2次之和,但实际只统计了其中一次

2、a向b连边m、b向a连同样的边n,这样费用流跑m一定跑n,这样就可以把1中2次汇总,因为对应边流量相等,所以答案要除2

因为要总价值和>=0,所以每次跑最大费用,

如果本次跑出的最大价值+已累积的价值>=0,继续跑

反之,次数+已累计价值/-本次单位流量最大费用,结束

因为累计价值不可能为负,而题目要求总价值和>=0,若满足反之条件,本次最大费用<0 且 本次最大费用总和绝对值>已累计价值,所以就看已累计价值最大能抵消多少次本次的负价值

#include<cstdio>
#include<queue>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int a[],b[],c[];
int tot=,src,dec;
int front1[],from[],next1[],to1[];
bool v[];
int n,fa[];
long long dis[],sum_cost,cost[],cap[];
int sum_flow;
queue<int>que;
bool judge(int x)
{
for(int i=;i<=sqrt(x);i++)
if(x%i==) return false;
return true;
}
void insert_edge(int u,int v,long long w,long long val)
{
to1[++tot]=v;from[tot]=u;next1[tot]=front1[u];front1[u]=tot;cap[tot]=w;cost[tot]=val;
to1[++tot]=u;from[tot]=v;next1[tot]=front1[v];front1[v]=tot;cap[tot]=;cost[tot]=-val;
}
bool spfa()
{
for(int i=;i<=dec;i++) dis[i]=-1e15,fa[i]=;
memset(v,,sizeof(v));
que.push(src);v[src]=true;
dis[]=;
while(!que.empty())
{
int now=que.front();
que.pop();v[now]=false;
for(int i=front1[now];i;i=next1[i])
{
if(dis[now]+cost[i]>dis[to1[i]]&&cap[i]>)
{
dis[to1[i]]=dis[now]+cost[i];
fa[to1[i]]=i;
if(!v[to1[i]])
{
que.push(to1[i]);
v[to1[i]]=true;
}
}
}
}
if(dis[dec]!=-1e10) return true;
return false;
}
void work()
{
while(spfa())
{
long long tmp=1e15,k=;
for(int i=fa[dec];i;i=fa[from[i]]) tmp=min(cap[i],tmp);
if(sum_cost+dis[dec]*1ll*tmp>=)
{
sum_cost+=dis[dec]*tmp;sum_flow+=tmp;
for(int i=fa[dec];i;i=fa[from[i]])
{
cap[i]-=tmp;cap[i^]+=tmp;
}
}
else
{
sum_flow+=int(sum_cost/abs(dis[dec]));
break;
}
}
printf("%d",sum_flow/);
return ;
}
int main()
{
freopen("menci_pair.in","r",stdin);
freopen("menci_pair.out","w",stdout);
scanf("%d",&n);
dec=n+<<;
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=;i<=n;i++) scanf("%d",&b[i]);
for(int i=;i<=n;i++) scanf("%d",&c[i]);
for(int i=;i<=n;i++) insert_edge(src,i<<,b[i],);
for(int i=;i<=n;i++) insert_edge(i<<|,dec,b[i],);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
if(a[i]<=a[j]) continue;
if(a[i]%a[j]==&&judge(a[i]/a[j]))
{
insert_edge(j<<,i<<|,1e15,1ll*c[i]*c[j]);
insert_edge(i<<,j<<|,1e15,1ll*c[i]*c[j]);
} }
work();
}

学长说了另外2种方法:

1、根据分解质因数的指数和的奇偶性,将所有点分为2个集合,构建二分图(标解,不想写就没写)

学长AC代码链接:http://www.cnblogs.com/harden/p/6399396.html

2、根据整除关系构成的链,将所有点分为2个集合,每条链的起点在哪个集合里随便,构建二分图,与1不同的地方就是链的起点在哪个集合的问题

(这个写了,然而调了一晚上+半上午,COGS提交最终3A 1W 1RE 5T ,法2正确性、代码正确性有待验证)

#include<cstdio>
#include<queue>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int a[201],b[201],c[201];
int front[210],next[160001],to[160001],tot,src,dec;
int front1[210],from[160001],next1[160001],to1[160001];
bool use_in[210],use_out[210],v[210];
int n,fa[210];
long long dis[210],sum_cost,cost[160001],cap[160001];
int sum_flow;
struct node1
{
int point,id;
};
queue<node1>q;
queue<int>que;
bool judge(int x)
{
for(int i=2;i<=sqrt(x);i++)
if(x%i==0) return false;
return true;
}
void add(int u,int v)
{
to[++tot]=v;next[tot]=front[u];front[u]=tot;
use_in[v]=true;use_out[u]=true;
}
void insert_edge(int u,int v,long long w,long long val)
{
to1[++tot]=v;from[tot]=u;next1[tot]=front1[u];front1[u]=tot;cap[tot]=w;cost[tot]=val;
to1[++tot]=u;from[tot]=v;next1[tot]=front1[v];front1[v]=tot;cap[tot]=0;cost[tot]=-val;
}
bool spfa()
{
for(int i=1;i<=dec;i++) dis[i]=-1e15,fa[i]=0;
que.push(src);v[src]=true;
while(!que.empty())
{
int now=que.front();
que.pop();v[now]=false;
for(int i=front1[now];i;i=next1[i])
{
if(dis[now]+1ll*cost[i]>dis[to1[i]]&&cap[i]>0)
{
dis[to1[i]]=dis[now]+1ll*cost[i];
fa[to1[i]]=i;
if(!v[to1[i]])
{
que.push(to1[i]);
v[to1[i]]=true;
}
}
}
}
if(dis[dec]!=-1e15) return true;
return false;
}
void work()
{
while(spfa())
{
long long tmp=1e15;
for(int i=fa[dec];i;i=fa[from[i]]) tmp=min(cap[i],tmp);
if(sum_cost+dis[dec]*1ll*tmp>=0)
{
sum_cost+=dis[dec]*tmp;sum_flow+=tmp;
for(int i=fa[dec];i;i=fa[from[i]])
{
cap[i]-=tmp;cap[i^1]+=tmp;
}
}
else
{
sum_flow+=int(sum_cost/abs(dis[dec]));
break;
}
}
printf("%d",sum_flow);
return ;
}
int main()
{
freopen("menci_pair.in","r",stdin);
freopen("menci_pair.out","w",stdout);
scanf("%d",&n);
dec=n+1;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) scanf("%d",&b[i]);
for(int i=1;i<=n;i++) scanf("%d",&c[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(a[i]<=a[j]) continue;
if(!a[j]) continue;
if(a[i]%a[j]==0&&judge(a[i]/a[j]))
{
add(j,i);
}
}
tot=1;
for(int i=1;i<=n;i++)
if(!use_in[i])
{
insert_edge(src,i,b[i],0);
q.push((node1){i,1});
}
while(!q.empty())
{
node1 now=q.front();q.pop();
for(int i=front[now.point];i;i=next[i])
{
int t=to[i];
if(now.id%2)
{
insert_edge(now.point,t,1e15,1ll*c[now.point]*c[t]);
insert_edge(t,dec,b[t],0);
q.push((node1){t,now.id+1});
}
else
{
insert_edge(t,now.point,1e15,1ll*c[now.point]*c[t]);
insert_edge(src,t,b[t],0);
q.push((node1){t,now.id+1});
}
}
}
work();
}

错误代码

[SDOI2016 Round1] 数字配对的更多相关文章

  1. Cogs 2221. [SDOI2016 Round1] 数字配对(二分图)

    [SDOI2016 Round1] 数字配对 ★★★ 输入文件:menci_pair.in 输出文件:menci_pair.out 简单对比 时间限制:1 s 内存限制:128 MB [题目描述] 有 ...

  2. cogs 2221. [SDOI2016 Round1] 数字配对

    ★★ 输入文件:pair.in 输出文件:pair.out 简单对比 时间限制:1 s 内存限制:128 MB [题目描述] 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两 ...

  3. 「SDOI2016」数字配对

    「SDOI2016」数字配对 题目大意 传送门 题解 \(a_i\) 是 \(a_j\) 的倍数,且 \(\frac{a_i}{a_j}\) 是一个质数,则将 \(a_i,a_j\) 质因数分解后,其 ...

  4. 【BZOJ4514】【SDOI2016】数字配对 [费用流]

    数字配对 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 有 n 种数字,第 i 种数字是 ...

  5. [SDOI2016][bzoj4514] 数字配对 [费用流]

    题面 传送门 思路 一个数字能且只能匹配一次 这引导我们思考:一次代表什么?代表用到一定上限(b数组)就不能再用,同时每用一次会产生价值(c数组) 上限?价值?网络流! 把一次匹配设为一点流量,那产生 ...

  6. 【LOJ】#2031. 「SDOI2016」数字配对

    题解 这个图是个二分图,因为如果有一个奇环的话,我们会发现一个数变成另一个数要乘上个数不同的质数,显然不可能 然后我们发现这个不是求最大流,而是问一定价值的情况下最大流是多少,二分一个流量,加上一条边 ...

  7. loj2031 「SDOI2016」数字配对

    跑最大费用最大流,注意到每次 spfa 出来的 cost 一定是越来越少的,啥时小于 \(0\) 了就停了吧. #include <iostream> #include <cstri ...

  8. 图论(费用流):BZOJ 4514 [Sdoi2016]数字配对

    4514: [Sdoi2016]数字配对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 820  Solved: 345[Submit][Status ...

  9. BZOJ 4514: [Sdoi2016]数字配对 [费用流 数论]

    4514: [Sdoi2016]数字配对 题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数 ...

随机推荐

  1. 使用java开发微信公众平台(1)

    目录 开发服务器 域名验证 获取access_token 自定义菜单 个人账号不能定义url访问服务器,使用测试号就不用认证添加url了,进入公众平台测试账号 开发服务器 域名验证 进入公众平台测试账 ...

  2. 【流程图】购物车、三级菜单、sed替换

  3. Week2-作业1 《构建之法》1、2、16章观后感

    这几天阅读了<构建之法>中的几章,受益匪浅,刷新了很多我对软件工程的认知.这本书让我很惊喜,阅读起来不像其他书一样枯燥,有很多人物的设计,以及对话的形式,非常有趣. 第一章.概述 读完第一 ...

  4. Windows10(UWP)下的MEF

    前言 最近在帮一家知名外企开发Universal Windows Platform的相关应用,开发过程中不由感慨:项目分为两种,一种叫做前人栽树后人乘凉,一种叫做前人挖坑后人遭殃.不多说了,多说又要变 ...

  5. flex 布局能解决的问题

    flex 布局,可以解决元素在容器中的对齐.方向.顺序,甚至它们是动态的或者不确定大小的新布局模型.Flex容器的主要特征是能够调整其子元素在不同的屏幕大小中能够用最适合的方法填充合适的空间 . 转载 ...

  6. Scrum Meeting Beta - 10

    Scrum Meeting Beta - 10 NewTeam 2017/12/11 地点:新主楼F座二楼 任务反馈 团队成员 完成任务 计划任务 安万贺 完成了作业详情的本地存储Issue #165 ...

  7. onMeasure实例分析

    本文转自:http://blog.csdn.net/u012604322/article/details/17097105           上面这个两个视图是Android API中没有给出来的但 ...

  8. SQL有三个类型的索引,唯一索引 不能有重复,但聚集索引,非聚集索引可以有重复

    重要: (1) SQL如果创建时候,不指定类型那么默认是非聚集索引 (2) 聚集索引和非聚集索引都可以有重复记录,唯一索引不能有重复记录. (3) 主键 默认是加了唯一约束的聚集索引,但是也可以在主键 ...

  9. [BZOJ4820]硬币游戏 KMP+高斯消元

    4820: [Sdoi2017]硬币游戏 Time Limit: 10 Sec  Memory Limit: 128 MB Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的 ...

  10. 【比赛】NOIP2017 宝藏

    这道题考试的时候就骗了部分分.其实一眼看过去,n范围12,就知道是状压,但是不知道怎么状压,想了5分钟想不出来就枪毙了状压,与AC再见了. 现在写的是状压搜索,其实算是哈希搜索,感觉状压DP理解不了啊 ...