查找树ADT——二叉查找树
二叉查找树:对于树中的每个节点X,它的左子数种所有关键字值小于X的关键字,而它的右子树种所有关键字值大于X的关键字值。
/* 二叉查找树声明 */ #ifndef _TREE_H struct TreeNode;
typedef struct TreeNode *Position;
typedef struct TreeNode *SearchTree; SearchTree MakeEmpty( SearchTree T);
Position Find(ElementType X, SearchTree T);
Position FindMin(SearchTree T);
Position FindMax(SearchTree T);
SearchTree Insert(ElementType X, SearchTree T);
ElementType Retrieve(Position P); #endif /* _TREE_H */
/* 建立一棵空树 */ SearchTree
MakeEmpty(SearchTree T)
{
if(T != NULL)
{
MakeEmpty(T->Left);
MakeEmpty(T->Right);
free(T);
}
return NULL;
}
/* 二叉查找树的Find操作 */ Position
Find(ElementType X, SearchTree T)
{
if(T == NULL)
return NULL;
if(X < T->Element)
return Find(X, T->Left);
else if(X > T->Element)
return Find(X, T->Right);
else
return T;
}
/* 对二叉查找树的FindMin的递归实现 */ Position
FindMin(SearchTree T)
{
if(T == NULL)
return NULL;
else if(T->Left == NULL)
return T;
else
return FindMin(T->Left);
}
/* 对二叉查找树的FindMax的非递归实现 */ Position
FindMax(SearchTree T)
{
if(T != NULL)
while(T->Right != NULL)
T = T->Right; return T;
}
/* 插入元素到二叉树 */ SearchTree
Insert(ElementType X, SearchTree T)
{
if(T == NULL)
{
/* Create and return a one-node tree */
T = malloc(sizeof(struct TreeNode));
if(T == NULL)
FatalError("Out of space!\n");
else
{
T->Element = X;
T->Left = T->Right = NULL;
}
}
else if(X < T->Element)
T->Left = Insert(X, T->Left);
else if(X > T->Element)
T->Right = Insert(X, T->Right);
/* Else X is in the tree already; we'll do nothing */ return T; /* Do not forget this line!!! */
}
/* 二叉查找树的删除 */ SearchTree
Delete(ElementType X, SearchTree T)
{
Position TmpCell; if(T == NULL)
Error("Element not found!");
else if(X < T->Element) /* Go left */
T->Left = Delete(X, T->Left);
else if(X > T->Element)
T->Right = Delete(X, T->Right);
else if(T->Left && T->Right) /* Two children */
{
/* Replace with smallest in right subtree */
TmpCell = FindMin(T->Right);
T->Element = TmpCell->Element;
T->Right = Delete(T->Element, T->Right);
}
else /* One or zero children */
{
TmpCell = T;
if(T->Left == NULL) /* Also handles 0 children */
T = T->Right;
else if(T->Right == NULL)
T = T->Left;
free(TmpCell);
} return T;
}
查找树ADT——二叉查找树的更多相关文章
- 查找树ADT——二叉搜索树
在以下讨论中,虽然任意复杂的关键字都是允许的,但为了简单起见,假设它们都是整数,并且所有的关键字是互异的. 总概 使二叉树成为二叉查找树的性质是,对于树中的每个节点X,它的左子树中所有关键字值小于 ...
- 查找树ADT
通过二叉查找树实现排序的例程 /** * 无论排序的对象是什么,都要实现Comparable接口 * * @param <T> */ public class BinaryNode< ...
- 浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树
http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的 ...
- HTTP协议漫谈 C#实现图(Graph) C#实现二叉查找树 浅谈进程同步和互斥的概念 C#实现平衡多路查找树(B树)
HTTP协议漫谈 简介 园子里已经有不少介绍HTTP的的好文章.对HTTP的一些细节介绍的比较好,所以本篇文章不会对HTTP的细节进行深究,而是从够高和更结构化的角度将HTTP协议的元素进行分类讲 ...
- 二叉查找树、平衡二叉树(AVLTree)、平衡多路查找树(B-Tree),B+树
B+树索引是B+树在数据库中的一种实现,是最常见也是数据库中使用最为频繁的一种索引. B+树中的B代表平衡(balance),而不是二叉(binary),因为B+树是从最早的平衡二叉树演化而来的. 在 ...
- 浅谈算法和数据结构: 十 平衡查找树之B树
前面讲解了平衡查找树中的2-3树以及其实现红黑树.2-3树种,一个节点最多有2个key,而红黑树则使用染色的方式来标识这两个key. 维基百科对B树的定义为“在计算机科学中,B树(B-tree)是一种 ...
- 数据结构:JAVA_二叉数查找树基本实现(中)
数据结构:二叉数查找树基本实现(JAVA语言版) 1.写在前面 二叉查找树得以广泛应用的一个重要原因是它能保持键的有序性,因此我们可以把它作为实现有序符号表API中的众多方法的基础. 也就是说我们构建 ...
- 转 浅谈算法和数据结构: 十 平衡查找树之B树
前面讲解了平衡查找树中的2-3树以及其实现红黑树.2-3树种,一个节点最多有2个key,而红黑树则使用染色的方式来标识这两个key. 维基百科对B树的定义为"在计算机科学中,B树(B-tre ...
- java实现二叉树查找树
二叉树(binary)是一种特殊的树.二叉树的每个节点最多只能有2个子节点: 二叉树 由于二叉树的子节点数目确定,所以可以直接采用上图方式在内存中实现.每个节点有一个左子节点(left childre ...
随机推荐
- JS判断图片上传时文件大小和图片尺寸
如何读取图片的size: 首先,原生input file控件有个files属性,该属性是一个数组.数组中的元素有以下属性:lastModifiedDate,name,size,type,webkitR ...
- php的哈希函数
哈希函数: echo password_hash("rasmuslerdorf", PASSWORD_DEFAULT)."\n"; 验证函数: boolean ...
- bio、nio、aio及select、poll、epoll
BIO与NIO.AIO的区别http://blog.csdn.net/skiof007/article/details/52873421 select.poll.epoll之间的区别总结http:// ...
- 分布式文件系统 ~MogileFS~
一.分布式文件系统 分布式文件系统(Distributed File System)是指文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通过计算机网络与节点相连,也就是集群文件系统,可以支持 ...
- String对象池的作用
我们知道得到String对象有两种办法:String str1="hello";String str2=new String("hello"); 这两种 ...
- springboot 启动类CommandLineRunner(转载)
在Spring boot项目的实际开发中,我们有时需要项目服务启动时加载一些数据或预先完成某些动作.为了解决这样的问题,Spring boot 为我们提供了一个方法:通过实现接口 CommandLin ...
- OpenCV学习(38) 人脸识别(3)
前面我们学习了基于特征脸的人脸识别,现在我们学习一下基于Fisher脸的人脸识别,Fisher人脸识别基于LDA(线性判别算法)算法,算法的详细介绍可以参考下面两篇教程内容: ...
- 网络编程socket之listen函数
摘要:listen函数使用主动连接套接口变为被连接套接口,使得一个进程可以接受其它进程的请求,从而成为一个服务器进程.在TCP服务器编程中listen函数把进程变为一个服务器,并指定相应的套接字变为被 ...
- 不错网络性能相关的文章-BaiduRPC
http://wiki.baidu.com/display/RPC/Threading+Overview#ThreadingOverview-单线程reactor Threading Overview ...
- Oracle—RMAN完全恢复
一.RMAN完全恢复的相关概念 1.在RMAN完全恢复中主要使用两个命令,一个是restore,另一个是recover. 2.可以在三个级别恢复,数据库,表空间,数据文件. 3.RMAN中应对于各种情 ...