LOJ2320「清华集训 2017」生成树计数
由于菜鸡的我实在是没学会上升幂下降幂那一套理论,这里用的是完全普通多项式的做法。
要是有大佬愿意给我讲讲上升幂下降幂那一套东西,不胜感激orz!
首先可以想到prufer序列,如果不会的话可以左转百度。
我们把答案写成prufer序列的形式,这样的话他的贡献是固定的,其中$d_i$表示$i$的出现次数。
$ans = (n-2)! \prod_{i=1}^n \frac{a_i^{d_i+1}}{d_i!}$
把原来的柿子带进来
$ans = \sum_{\sum d_i = n-2} (n-2)! \sum_{i=1}^n a_i^{d_i+1} d_i^m\prod_{j=1}\frac{d_j^m}{d_j!}$
把相同的因数提出来
$ans =(n-2)! \prod_{i=1}^n a_i \sum_{\sum d_i = n-2} \sum_{i=1}^n a_i^{d_i} d_i^m\prod_{j=1}\frac{d_j^m}{d_j!}$
考虑后面的
$ans' = \sum_{\sum d_i = n-2} \sum_{i=1}^n a_i^{d_i} d_i^m\prod_{j=1}\frac{d_j^m}{d_j!}$
为了方便写成生成函数形式,把柿子化成这样
$ans' = \sum_{\sum d_i = n-2} \sum_{i=1}^n \frac{a_i^{d_i} d_i^{2m}}{d_i!}\prod_{j=1,j\neq i}\frac{d_j^m}{d_j!} $
设
$A(x)=\sum_{i=0}^n \frac{i^{2m}}{i!} x^i$
$B(x)=\sum_{i=0}^n \frac{i^m}{i!} x^i$
把它们带进去
$ans '=\sum_{i=1}^n A(a_i) \prod_{j=1,j\neq i}^n B(a_j) \\ = \sum_{i=1}^n \frac{A}{B}(a_i) \prod_{j=1}^n B(a_j)$
对于$\prod B(a_i)$ 根据常见套路,写成$exp(\sum ln(B(a_i)))$ 当然$\frac{A}{B}$也是这么处理。
接下来我们就遇到了更常见的,求$\sum_{i=1}^{n} a_i^k$ 也就是求数列幂和。
这个东西可以戳这里:qwq (额 需要密码,如果你需要的话可以戳我QQ)
这里简略的说一下,就是我们有$F(x)=\sum(a_1^i+...+a_n^i)x^i$ 可以化成这样$F(x) = \sum (a_ix+...+a_i^nx^n)$ 进而写成这样$F(x) = \sum \frac{a_i}{1-a_ix}$
我们令$G(x) = \prod (1-a_ix)$ 所以有$F = -ln'(G)$
对于$G$来说,我们可以直接分治FFT,然后F就可以poly_ln来求
其余的就是写一个多项式全家桶就可以了。
啊,多项式真有趣。
//Love and Freedom.
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define ll long long
#define inf 20021225
#define mdn 998244353
#define G 3
#define N 400100
using namespace std;
int read()
{
int s=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-; ch=getchar();}
while(ch>=''&&ch<='') s=s*+ch-'',ch=getchar();
return f*s;
}
int fac[N],inv[N];
int Inv(int x){return 1ll*inv[x]*fac[x-]%mdn;}
void upd(int &x,int y){x+=x+y>=mdn?y-mdn:y;}
int ksm(int bs,int mi)
{
int ans=;
while(mi)
{
if(mi&) ans=1ll*ans*bs%mdn;
bs=1ll*bs*bs%mdn; mi>>=;
}
return ans;
}
int r[N];
int init(int n)
{
int l=,lim=;
while(lim<n) lim<<=,l++;
for(int i=;i<lim;i++)
r[i]=(r[i>>]>>)|((i&)<<l-);
return lim;
}
void ntt(int *a,int lim,int f)
{
for(int i=;i<lim;i++) if(r[i]>i)
swap(a[r[i]],a[i]);
for(int k=,mid=;k<=lim;k<<=,mid<<=)
{
int Wn=ksm(G,(mdn-)/k); if(f) Wn=ksm(Wn,mdn-);
for(int w=,i=;i<lim;i+=k,w=) for(int j=;j<mid;j++,w=1ll*w*Wn%mdn)
{
int x=a[i+j],y=1ll*w*a[i+mid+j]%mdn;
a[i+j]=(x+y)%mdn; a[i+mid+j]=(mdn+x-y)%mdn;
}
}
if(f) for(int kinv=ksm(lim,mdn-),i=;i<lim;i++)
a[i]=1ll*a[i]*kinv%mdn;
}
int poly_mul(int *a,int *b,int *c,int n)
{
int lim=init(n<<);
ntt(a,lim,); ntt(b,lim,);
for(int i=;i<lim;i++) c[i]=1ll*a[i]*b[i]%mdn;
ntt(c,lim,); return lim;
}
int tmp[N];
void poly_inv(int *a,int *ans,int n)
{
if(n==){ans[]=ksm(a[],mdn-); return;}
int mid=n+>>; poly_inv(a,ans,mid);
int lim=init(n<<);
for(int i=;i<n;i++) tmp[i]=a[i];
for(int i=n;i<lim;i++) tmp[i]=;
ntt(tmp,lim,); ntt(ans,lim,);
for(int i=;i<lim;i++)
ans[i]=(2ll-1ll*tmp[i]*ans[i]%mdn+mdn)*ans[i]%mdn;
ntt(ans,lim,);
for(int i=n;i<lim;i++) ans[i]=;
}
int tmp2[N];
void poly_ln(int *a,int *ans,int n)
{
poly_inv(a,tmp2,n);
for(int i=;i<n;i++) ans[i]=1ll*a[i+]*(i+)%mdn;
int lim=poly_mul(tmp2,ans,tmp2,n); tmp2[n-]=;
for(int i=;i<n;i++) ans[i]=1ll*tmp2[i-]*Inv(i)%mdn,tmp2[i-]=;
for(int i=n;i<lim;i++) ans[i]=tmp2[i]=;
ans[]=;
}
int tmp3[N],tmp4[N];
void poly_exp(int *a,int *ans,int n)
{
if(n==){ans[]=; return;}
int mid=n+>>; poly_exp(a,ans,mid);
for(int i=;i<(n<<);i++) tmp2[i]=tmp3[i]=;
for(int i=;i<n;i++) tmp4[i]=a[i]; poly_ln(ans,tmp3,n);
int lim=init(n<<);
ntt(tmp3,lim,); ntt(tmp4,lim,); ntt(ans,lim,);
for(int i=;i<lim;i++)
ans[i]=1ll*(tmp4[i]-tmp3[i]++mdn)%mdn*ans[i]%mdn;
ntt(ans,lim,);
for(int i=n;i<lim;i++) ans[i]=tmp4[i]=;
}
int tmp5[N],tmp6[N];
void solve(int *a,int l,int r)
{
if(l==r) return;
int mid=l+r>>;
solve(a,l,mid); solve(a,mid+,r);
int d=r-l+;
for(int i=l;i<=mid;i++) tmp5[i-l+]=a[i];
for(int i=mid+;i<=r;i++) tmp6[i-mid]=a[i];
tmp5[]=tmp6[]=;
int lim=poly_mul(tmp5,tmp6,tmp5,d);
for(int i=;i<d;i++) a[l+i]=tmp5[i+];
for(int i=;i<=lim;i++) tmp5[i]=tmp6[i]=;
}
void prework(int n)
{
n++; fac[]=;
for(int i=;i<=n;i++) fac[i]=1ll*fac[i-]*i%mdn;
inv[n]=ksm(fac[n],mdn-);
for(int i=n;i;i--) inv[i-]=1ll*inv[i]*i%mdn;
}
int a[N],f[N],n,m,g[N],A[N],B[N],in[N],fr[N],ls[N];
int main()
{
n=read(),m=read(); prework(n);
for(int i=;i<=n;i++) a[i]=read(),f[i]=(mdn-a[i])%mdn;
solve(f,,n); f[]=; poly_ln(f,g,n+);
for(int i=;i<=n;i++) f[i]=1ll*g[i+]*(i+)%mdn;
for(int i=n;i;i--) f[i]=(-f[i-]+mdn)%mdn; f[]=n;
for(int i=;i<=n;i++)
{
A[i]=1ll*ksm(i+,*m)*inv[i]%mdn;
B[i]=1ll*ksm(i+,m)*inv[i]%mdn;
}
int lim=init(n<<|);
poly_ln(B,g,n+); poly_inv(B,in,n+);
for(int i=;i<n;i++) g[i]=1ll*g[i]*f[i]%mdn;
for(int i=n;i<lim;i++) g[i]=in[i]=;
poly_exp(g,ls,n);
for(int i=n;i<lim;i++) ls[i]=;
poly_mul(A,in,fr,n);
for(int i=;i<n;i++) fr[i]=1ll*fr[i]*f[i]%mdn;
for(int i=n;i<lim;i++) fr[i]=;
poly_mul(fr,ls,f,n);
int ans=fac[n-];
for(int i=;i<=n;i++) ans=1ll*ans*a[i]%mdn;
ans=1ll*ans*f[n-]%mdn;
printf("%d\n",ans);
return ;
}
LOJ2320「清华集训 2017」生成树计数的更多相关文章
- Loj 2320.「清华集训 2017」生成树计数
Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...
- 【LOJ】#2320. 「清华集训 2017」生成树计数
题解 我,理解题解,用了一天 我,卡常数,又用了一天 到了最后,我才发现,我有个加法取模,写的是while(c >= MOD) c -= MOD 我把while改成if,时间,少了 六倍. 六倍 ...
- Loj #2331. 「清华集训 2017」某位歌姬的故事
Loj #2331. 「清华集训 2017」某位歌姬的故事 IA 是一名会唱歌的女孩子. IOI2018 就要来了,IA 决定给参赛选手们写一首歌,以表达美好的祝愿.这首歌一共有 \(n\) 个音符, ...
- Loj #2324. 「清华集训 2017」小 Y 和二叉树
Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...
- Loj #2321. 「清华集训 2017」无限之环
Loj #2321. 「清华集训 2017」无限之环 曾经有一款流行的游戏,叫做 *Infinity Loop***,先来简单的介绍一下这个游戏: 游戏在一个 \(n \times m\) 的网格状棋 ...
- loj #2325. 「清华集训 2017」小Y和恐怖的奴隶主
#2325. 「清华集训 2017」小Y和恐怖的奴隶主 内存限制:256 MiB时间限制:2000 ms标准输入输出 题目类型:传统评测方式:文本比较 题目描述 "A fight? Co ...
- [LOJ#2330]「清华集训 2017」榕树之心
[LOJ#2330]「清华集训 2017」榕树之心 试题描述 深秋.冷风吹散了最后一丝夏日的暑气,也吹落了榕树脚下灌木丛的叶子.相识数年的Evan和Lyra再次回到了小时候见面的茂盛榕树之下.小溪依旧 ...
- [LOJ#2329]「清华集训 2017」我的生命已如风中残烛
[LOJ#2329]「清华集训 2017」我的生命已如风中残烛 试题描述 九条可怜是一个贪玩的女孩子. 这天她在一堵墙钉了 \(n\) 个钉子,第 \(i\) 个钉子的坐标是 \((x_i,y_i)\ ...
- [LOJ#2328]「清华集训 2017」避难所
[LOJ#2328]「清华集训 2017」避难所 试题描述 "B君啊,你当年的伙伴都不在北京了,为什么你还在北京呢?" "大概是因为出了一些事故吧,否则这道题就不叫避难所 ...
随机推荐
- Visual Studio Code - 代码提示使用 webpack alias 的模块
使用 PathIntellisense 还是使用jsconfig.json? 使用 PathIntellisense 只能提示模块路径,并无法让 vs code 的 Intellisense 知道这个 ...
- list,string,tuple,dictionary之间的转换
list,string,tuple,dictionary之间的转换 类型 String List tuple dictionary String - list(str), str.split() tu ...
- 大sd卡 裂开了,写保护掉了。重新装好后,被写保护的解决办:
大sd卡 裂开了,写保护掉了.重新装好后,被写保护的解决办: 1.用烙铁把写保护附近的塑料往外顶一点点,就ok 别太热,也别劲太大.容易过,不能破坏原来的部分. 解决问题. 总结: 写保护,就是检 ...
- vue 中滚动div至最底部
scrollToBottom: function () { this.$nextTick(() => { var container = this.$el.querySelector(" ...
- selenium学习-对当前浏览器窗口截屏
方法:get_screenshot_as_file(filename) # coding=UTF-8 #16.对当前浏览器窗口截屏 import sys reload(sys) sys.setdefa ...
- angulart 常用
angular: 使用 echarts npm install echarts --save // 安装declare const echarts: any; // 引入https://www.ech ...
- 语言I—2019秋作业02
这个作业属于那个课程 这个作业要求在哪里 我在这个课程的目标是 这个作业在那个具体方面帮助我实现目标 参考文献 C语言程序设计I https://edu.cnblogs.com/campus/zswx ...
- [转帖]TLS握手:回顾1.2、迎接1.3
TLS握手:回顾1.2.迎接1.3 novsec2019-05-10共26541人围观 ,发现 2 个不明物体网络安全 *本文原创作者:novsec,本文属于FreeBuf原创奖励计划,未经许可禁止转 ...
- tensorflow白话篇
接触机器学习也有相当长的时间了,对各种学习算法都有了一定的了解,一直都不愿意写博客(借口是没时间啊),最近准备学习深度学习框架tensorflow,决定还是应该把自己的学习一步一步的记下来,方便后期的 ...
- c++ 判断两圆位置关系
对于两圆的位置一般有五种关系: (1) 外离:两圆的半径之和小于两圆圆心距离 (2) 外切:两圆的半径之和等于两圆圆心距离 (3) 相交:两圆的半径之和大于两圆圆心距离,两圆圆心距离大于两圆半径之差 ...