Description

You are in charge of setting up the press room for the inaugural meeting of the United Nations Internet eXecutive (UNIX), which has an international mandate to make the free flow of information and ideas on the Internet as cumbersome and bureaucratic as possible. 
Since the room was designed to accommodate reporters and journalists from around the world, it is equipped with electrical receptacles to suit the different shapes of plugs and voltages used by appliances in all of the countries that existed when the room was built. Unfortunately, the room was built many years ago when reporters used very few electric and electronic devices and is equipped with only one receptacle of each type. These days, like everyone else, reporters require many such devices to do their jobs: laptops, cell phones, tape recorders, pagers, coffee pots, microwave ovens, blow dryers, curling 
irons, tooth brushes, etc. Naturally, many of these devices can operate on batteries, but since the meeting is likely to be long and tedious, you want to be able to plug in as many as you can. 
Before the meeting begins, you gather up all the devices that the reporters would like to use, and attempt to set them up. You notice that some of the devices use plugs for which there is no receptacle. You wonder if these devices are from countries that didn't exist when the room was built. For some receptacles, there are several devices that use the corresponding plug. For other receptacles, there are no devices that use the corresponding plug. 
In order to try to solve the problem you visit a nearby parts supply store. The store sells adapters that allow one type of plug to be used in a different type of outlet. Moreover, adapters are allowed to be plugged into other adapters. The store does not have adapters for all possible combinations of plugs and receptacles, but there is essentially an unlimited supply of the ones they do have.

Input

The input will consist of one case. The first line contains a single positive integer n (1 <= n <= 100) indicating the number of receptacles in the room. The next n lines list the receptacle types found in the room. Each receptacle type consists of a string of at most 24 alphanumeric characters. The next line contains a single positive integer m (1 <= m <= 100) indicating the number of devices you would like to plug in. Each of the next m lines lists the name of a device followed by the type of plug it uses (which is identical to the type of receptacle it requires). A device name is a string of at most 24 alphanumeric 
characters. No two devices will have exactly the same name. The plug type is separated from the device name by a space. The next line contains a single positive integer k (1 <= k <= 100) indicating the number of different varieties of adapters that are available. Each of the next k lines describes a variety of adapter, giving the type of receptacle provided by the adapter, followed by a space, followed by the type of plug.

Output

A line containing a single non-negative integer indicating the smallest number of devices that cannot be plugged in.

Sample Input

4
A
B
C
D
5
laptop B
phone C
pager B
clock B
comb X
3
B X
X A
X D

Sample Output

1

现在有n个插头,m个用电器,每个用电器有一个自己的插口,还有k个插头转化器(将插头从一种转换为另一种),问你最少有多少个充电器充不上电
主要思路就是建图,我们把源点与每个用电器建一条容量为1的边,每个用电器跟自己的插头建一条容量为1的边,在对于每个转换器的头跟尾建一条容量为inf的边,跑最大流即可
为什么要对转换器建一条inf的边呢?因为不能让这条边容量的大小卡住了源点的流,所以容量尽可能大
细节!!!!!输完n个插头之后还可能出现新的插头,别忘了继续加入map
maxn开大一点
#include <string>
#include <cstdio>
#include <cstring>
#include <map>
#include <cmath>
#include <queue>
#include <iostream>
using namespace std;
#define inf 0x3f3f3f3f
const int maxn = ;
int c[maxn][maxn];
int dep[maxn];
int cur[maxn];
int n,m,k;
map<string,int> name;
int tot;
int bfs (int s,int t)
{
memset(dep,-,sizeof dep);
queue<int> q;
while (!q.empty()) q.pop();
dep[s] = ;
q.push(s);
while (!q.empty()){
int u=q.front();
q.pop();
for (int v=;v<=;++v){
if (c[u][v]>&&dep[v]==-){
dep[v]=dep[u]+;
q.push(v);
}
}
}
return dep[t]!=-;
}
int dfs (int u,int mi,int t)
{
if (u==t)
return mi;
int tmp;
for (int &v=cur[u];v<=;++v){
if (c[u][v]>&&dep[v]==dep[u]+&&(tmp=dfs(v,min(mi,c[u][v]),t))){
c[u][v]-=tmp;
c[v][u]+=tmp;
return tmp;
}
}
return ;
}
int dinic ()
{
int ans = ;
int tmp;
while (bfs(,)){
while (){
for (int i=;i<maxn;++i) cur[i]=;
tmp = dfs(,inf,);
if (tmp==)
break;
ans+=tmp;
}
}
return ans;
}
int main()
{
//freopen("de.txt","r",stdin);
while(~scanf("%d",&n)){
memset(c,,sizeof c);
tot=;
for (int i=;i<=n;++i){
string str;
cin>>str;
name[str]=i;
c[name[str]][]=;
tot++;
}
scanf("%d",&m);
for (int i=;i<=m;++i){
string stra,strb;
cin>>stra>>strb;
name[stra]=tot++;
if (!name[strb]) name[strb]=tot++;
c[][name[stra]]=;
c[name[stra]][name[strb]]=;
}
scanf("%d",&k);
for (int i=;i<k;++i){
string a,b;
cin>>a>>b;
if (!name[a]) name[a]=tot++;
if (!name[b]) name[b]=tot++;
c[name[a]][name[b]]=inf;
}
printf("%d\n",m-dinic());
}
return ;
}

 

POJ A Plug for UNIX (最大流 建图)的更多相关文章

  1. poj 3281 最大流+建图

    很巧妙的思想 转自:http://www.cnblogs.com/kuangbin/archive/2012/08/21/2649850.html 本题能够想到用最大流做,那真的是太绝了.建模的方法很 ...

  2. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  3. poj3680 Intervals 区间k覆盖问题 最小费用最大流 建图巧妙

    /** 题目:poj3680 Intervals 区间k覆盖问题 最小费用最大流 建图巧妙 链接:http://poj.org/problem?id=3680 题意:给定n个区间,每个区间(ai,bi ...

  4. hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙

    /** 题目:hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4106 ...

  5. 图论--网络流--最小割 HDU 2485 Destroying the bus stations(最短路+限流建图)

    Problem Description Gabiluso is one of the greatest spies in his country. Now he's trying to complet ...

  6. 【poj1087/uva753】A Plug for UNIX(最大流)

    A Plug for UNIX   Description You are in charge of setting up the press room for the inaugural meeti ...

  7. TZOJ 1911 A Plug for UNIX(最大流)

    描述 You are in charge of setting up the press room for the inaugural meeting of the United Nations In ...

  8. POJ1087:A Plug for UNIX(最大流)

    A Plug for UNIX 题目链接:https://vjudge.net/problem/POJ-1087 Description: You are in charge of setting u ...

  9. POJ1087 A Plug for UNIX —— 最大流

    题目链接:https://vjudge.net/problem/POJ-1087 A Plug for UNIX Time Limit: 1000MS   Memory Limit: 65536K T ...

随机推荐

  1. luogu P3768 简单的数学题 杜教筛 + 欧拉反演 + 逆元

    求 $\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j)$   考虑欧拉反演: $\sum_{d|n}\varphi(d)=n$   $\Rightarrow \sum_{i ...

  2. SQL注入的简单认识

    写在前面 MYSQL5.0之后的版本,默认在数据库中存放一个information_schema的数据库,其中应该记住里面的三个表SCHEMATA.TABLES.COLUMNS SCHEMATA表:存 ...

  3. python-zx笔记4-文件操作

    一.打开文件 file object = open(file_name [, access_mode][, buffering]) file_name:file_name变量是一个包含了你要访问的文件 ...

  4. Axure RP 8.0软件安装教程

    Axure8.0(32/64)位下载地址: 链接:https://pan.baidu.com/s/1qYSLkKW 密码:skaw 软件介绍: Axure RP是一个专业的快速原型设计工具,让负责定义 ...

  5. Django中执行原生SQL语句【新编辑】

    参考我的个人博客 这部分迁移到了个人博客中:Django中执行原生SQL语句 这里需要补充一下,还有一个extra方法: ret = models.Student.objects.all().extr ...

  6. vue (UI)

  7. 转 : jconsole 和jvisualVM 监控远程 spring boot程序

    监控java 程序 增加启动参数 java  \ -Djava.rmi.server.hostname=192.168.2.39 \ -Dcom.sun.management.jmxremote \- ...

  8. 实用js片段

    算法 //加法 add(10,2) //12 function add(a, b) { var c, d, e; try { c = a.toString().split(".") ...

  9. python面试题之迭代器和生成器的区别

    1 迭代器是一个更抽象的概念,任何对象,如果它的类有next方法和iter方法返回自己本身.对于string.list.dict.tuple等这类容器对象,使用for循环遍历是很方便的.在后台for语 ...

  10. addr2line探秘 [從ip讀出程式中哪行出錯]

    addr2line探秘 在Linux下写C/C++程序的程序员,时常与Core Dump相见.在内存越界访问,收到不能处理的信号,除零等错误出现时,我们精心或不精心写就的程序就直接一命呜呼了,Core ...