题目链接:POJ 1789

Description

Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for vegetable delivery, other for furniture, or for bricks. The company has its own code describing each type of a truck. The code is simply a string of exactly seven lowercase letters (each letter on each position has a very special meaning but that is unimportant for this task). At the beginning of company's history, just a single truck type was used but later other types were derived from it, then from the new types another types were derived, and so on.

Today, ACM is rich enough to pay historians to study its history. One thing historians tried to find out is so called derivation plan -- i.e. how the truck types were derived. They defined the distance of truck types as the number of positions with different letters in truck type codes. They also assumed that each truck type was derived from exactly one other truck type (except for the first truck type which was not derived from any other type). The quality of a derivation plan was then defined as

\(1/Σ_{(t_o,t_d)}d(t_o,t_d)\)

where the sum goes over all pairs of types in the derivation plan such that \(t_o\) is the original type and \(t_d\) the type derived from it and d(\(t_o\),\(t_d\)) is the distance of the types.

Since historians failed, you are to write a program to help them. Given the codes of truck types, your program should find the highest possible quality of a derivation plan.

Input

The input consists of several test cases. Each test case begins with a line containing the number of truck types, N, 2 <= N <= 2 000. Each of the following N lines of input contains one truck type code (a string of seven lowercase letters). You may assume that the codes uniquely describe the trucks, i.e., no two of these N lines are the same. The input is terminated with zero at the place of number of truck types.

Output

For each test case, your program should output the text "The highest possible quality is 1/Q.", where 1/Q is the quality of the best derivation plan.

Sample Input

4
aaaaaaa
baaaaaa
abaaaaa
aabaaaa
0

Sample Output

The highest possible quality is 1/3.

Source

CTU Open 2003

Solution

题意

用一个 \(7\) 位的字符串代表一个编号,两个编号之间的距离等于这两个编号之间不同字母的个数。

给定 \(n\) 个编号,求连接所有编号的最短距离。

思路

Kruskal

把每个字符串看成结点,用无向边连接任意两个结点,边权为两个字符串之间的距离,对构成的无向图求最小生成树就是答案。

Code

#include <iostream>
#include <cstdio>
#include <queue>
#include <map>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 2010, M = 4e6 + 10;
const int inf = 0x3f3f3f3f;
int n, m;
int ans; struct Edge {
int x, y, z;
} edge[M]; int fa[N]; int cmp(Edge a, Edge b) {
return a.z < b.z;
} int get(int x) {
if(x == fa[x]) return x;
return fa[x] = get(fa[x]);
} void init() {
for(int i = 0; i <= n; ++i) {
fa[i] = i;
}
ans = 0;
} void kruskal() {
sort(edge + 1, edge + 1 + m, cmp);
for(int i = 1; i <= m; ++i) {
int x = get(edge[i].x);
int y = get(edge[i].y);
if(x != y) {
ans += edge[i].z;
fa[x] = y;
}
}
} char str[N][10]; int dis(int x, int y) {
int res = 0;
for(int i = 0; i < 7; ++i) {
if(str[x][i] != str[y][i]) {
++res;
}
}
return res;
} int main() {
while(scanf("%d", &n) && n) {
for(int i = 1; i <= n; ++i) {
scanf("%s", str[i]);
}
init();
m = 0;
for(int i = 1; i <= n; ++i) {
for(int j = i + 1; j <= n; ++j) {
edge[++m].x = i;
edge[m].y = j;
edge[m].z = dis(i, j);
}
}
kruskal();
printf("The highest possible quality is 1/%d.\n", ans);
}
return 0;
}

POJ 1789 Truck History (Kruskal)的更多相关文章

  1. POJ 1789 Truck History (Kruskal 最小生成树)

    题目链接:http://poj.org/problem?id=1789 Advanced Cargo Movement, Ltd. uses trucks of different types. So ...

  2. POJ 1789 Truck History (Kruskal最小生成树) 模板题

    Description Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for v ...

  3. Kuskal/Prim POJ 1789 Truck History

    题目传送门 题意:给出n个长度为7的字符串,一个字符串到另一个的距离为不同的字符数,问所有连通的最小代价是多少 分析:Kuskal/Prim: 先用并查集做,简单好写,然而效率并不高,稠密图应该用Pr ...

  4. POJ 1789 -- Truck History(Prim)

     POJ 1789 -- Truck History Prim求分母的最小.即求最小生成树 #include<iostream> #include<cstring> #incl ...

  5. poj 1789 Truck History

    题目连接 http://poj.org/problem?id=1789 Truck History Description Advanced Cargo Movement, Ltd. uses tru ...

  6. POJ 1789 Truck History【最小生成树简单应用】

    链接: http://poj.org/problem?id=1789 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  7. POJ 1789 Truck History (最小生成树)

    Truck History 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/E Description Advanced Carg ...

  8. poj 1789 Truck History 最小生成树

    点击打开链接 Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15235   Accepted:  ...

  9. poj 1789 Truck History【最小生成树prime】

    Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 21518   Accepted: 8367 De ...

随机推荐

  1. 手机网页制作的认识(有关meta标签)(转)

    仅用来记录学习: 链接地址:https://blog.csdn.net/ye1992/article/details/22714621

  2. 好1.1.4 PTA提交列表及说明

    这个作业属于那个课程 C语言程序设计II 这个作业要求在哪里 我在这个课程的目标是 这个作业在那个具体方面帮助我实现目标 概括本周的学习以及更加熟练本周的代码 参考文献 C语言程序设计 百度文献 (h ...

  3. QTP与QC整合

    QC-QTP整合 在本节中,我们将学习如何将QTP和QC整合.通过整合,在QTP自动化脚本可以直接从Quality Center执行.建立连接,第一个步骤是安装所需的加载项.我们将了解如何通过采取样品 ...

  4. [fw]PAGE_SIZE & PAGE_SHIFT & _AC()

    PAGE_SIZE & PAGE_SHIFT & _AC() 在大多系统下,PAGE_SIZE被定义为 4k 大小,即 4096 字节. 在 x86 系统里,PAGE_SIZE 和 P ...

  5. SSL连接出现的问题

    客户端向服务器发送数据时,份两种情况,SSL单向验证和SSL双向验证 1.SSL单向验证时 代码如下: import java.io.IOException; import java.util.Has ...

  6. windows10图形化连接CentOS7

    前提:CentOS已经安装图形化,安装教程可以百度 [root@localhost ~]# cat /etc/redhat-release CentOS Linux release (Core) 安装 ...

  7. for循环(C语言型)语法

  8. showmount - 显示关于 NFS 服务器文件系统挂载的信息

    总览 /usr/sbin/showmount [ -adehv ] [ --all ] [ --directories ] [ --exports ] [ --help ] [ --version ] ...

  9. Centos yum的源 设置为阿里云源

    在 阿里巴巴镜像站页面,在centos 操作的帮助,有介绍 wget和curl 2种方式来下载CentOS-Base.repo 备份 mv /etc/yum.repos.d/CentOS-Base.r ...

  10. python3 线程调用与GIL 锁机制

    转载