Leetcode代码复盘_动态规划
动态规划中包含3个重要的概念:
1.最优子结构 2.边界 3.状态转移公式
以跳台阶为例,最优子结构为f(10)=f(9) + f(8),边界是f(1)=1, f(2)=2,状态转移公式f(n)=f(n-1) + f(n-2)
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
解法1
首先对这道题,我们可以通过找规律来解
一只青蛙可以跳上1级台阶,也可以跳上2两级台阶
当n = 1时,有1种跳法
当n = 2时,有2种跳法
当n = 3时,有3种跳法
当n = 4时,有5种跳法
当n = 5时,有8种跳法
...
等等,1,2,3,5,8...,多么熟悉的数列,斐波那契?
仔细想想当有n(n >= 2)级台阶时,求F(n)
青蛙第一步可以选择跳上1级台阶,则还剩n - 1级台阶需要跳,即F(n - 1)
青蛙第一步也可以选择跳上2级台阶,则还剩n - 2级台阶需要跳,即F(n - 2)
则总的跳法F(n) = F(n - 1) + F(n - 2),毫无疑问这就是斐波那契数列的定义了。
最长回文子串
方法三:动态规划
为了改进暴力法,我们首先观察如何避免在验证回文时进行不必要的重复计算。考虑“ababa” 这个示例。如果我们已经知道“bab” 是回文,那么很明显,“ababa” 一定是回文,因为它的左首字母和右尾字母是相同的。
C++的动态规划写法:
class Solution {
public:
string longestPalindrome(string str) {
const int n = str.size();
if(n < ) return str;
int s = , e = ;
int dp[n] = {, };
for(int j = ; j < n; ++j){
for(int i = ; i < j; ++i){
if(!(dp[i] = dp[i + ] || str[i] != str[j]) && (e - s) <= (j - i))
s = i, e = j;
}
}
return str.substr(s, e - s + );
}
};
令dp[j][i]从字符串j到i是否为回文串
动态回归方程 dp[j][i]是看j+1和i-1是否为回文串.
class Solution(object):
def longestPalindrome(self, s):
n = len(s)
dp = [[0] * n for _ in range(n)]
max_len = float("-inf")
res = ""
for i in range(n):
# dp[i][i] = 1
for j in range(i, -1, -1):
if s[i] == s[j] and (i - j < 2 or dp[i - 1][j + 1]):
dp[i][j] = 1 if dp[i][j] and i - j + 1 > max_len: max_len = i - j + 1
res = s[j:i + 1]
# print(dp)
return res
class Solution {
public String longestPalindrome(String s) {
int n = s.length();
String res = "";
boolean[][] dp = new boolean[n][n];
for(int i = 0 ;i < n; i++){
for(int j = i; j >= 0 ;j --){
if(s.charAt(i) == s.charAt(j) && ( i - j < 2 || dp[i-1][j+1]))
dp[i][j] = true;
if (dp[i][j] && (i - j + 1 > res.length())){
res = s.substring(j,i+1);
}
}
}
return res; }
}
Leetcode代码复盘_动态规划的更多相关文章
- Leetcode代码复盘_分治法相关
分治法 1.二分搜索(算法时间复杂度O(log n)) 输出:如果x=A[j],则输出j,否则输出0. 1.binarysearch(1,n) 过程:binarysearch(low,high) 1. ...
- BZOJ_1672_[Usaco2005 Dec]Cleaning Shifts 清理牛棚_动态规划+线段树
BZOJ_1672_[Usaco2005 Dec]Cleaning Shifts 清理牛棚_动态规划+线段树 题意: 约翰的奶牛们从小娇生惯养,她们无法容忍牛棚里的任何脏东西.约翰发现,如果要使这群 ...
- 51nod_1412_AVL树的种类_动态规划
51nod_1412_AVL树的种类_动态规划 题意: 平衡二叉树(AVL树),是指左右子树高度差至多为1的二叉树,并且该树的左右两个子树也均为AVL树. 现在问题来了,给定AVL树的节点个数n,求有 ...
- LeetCode探索初级算法 - 动态规划
LeetCode探索初级算法 - 动态规划 今天在LeetCode上做了几个简单的动态规划的题目,也算是对动态规划有个基本的了解了.现在对动态规划这个算法做一个简单的总结. 什么是动态规划 动态规划英 ...
- LeetCode 第70题动态规划算法
导言 看了 动态规划(https://www.cnblogs.com/fivestudy/p/11855853.html)的帖子,觉得写的很好,记录下来. 动态规划问题一直是算法面试当中的重点和难点, ...
- LeetCode 62,从动态规划想到更好的解法
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode专题第36篇文章,我们一起来看下LeetCode的62题,Unique Paths. 题意 其实这是一道老掉牙的题目了 ...
- [leetcode] 题型整理之动态规划
动态规划属于技巧性比较强的题目,如果看到过原题的话,对解题很有帮助 55. Jump Game Given an array of non-negative integers, you are ini ...
- Leetcode 494 Target Sum 动态规划 背包+滚动数据
这是一道水题,作为没有货的水货楼主如是说. 题意:已知一个数组nums {a1,a2,a3,.....,an}(其中0<ai <=1000(1<=k<=n, n<=20) ...
- 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略
原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
随机推荐
- python学习笔记之入门
1.变量 变量即为可以改变的量,值是可以更改的. 如何定义 name = ‘name’ age = 20 .......... 变量的定义规范 1.变量名只能是 字母.数字或下划线的任意组合 .2. ...
- 转 awk统计nginx每天访问最高的接口
TODAY=date +%d/%b/%Y 获取当天时间awk -v val="$TODAY" ’ $4 ~ val {print $7}’ access.log 打印当天访问的接口 ...
- log4j/slf4j
log4j的使用 引入log4j.jar包 <dependency> <groupId>log4j</groupId> <artifactId>log4 ...
- 使用 QSqlTableModel 模型向数据库中插入数据时,为什么使用 rowCount 函数只能返回 256 最大值?
默认返回缓冲区里面的数据,如果你向要获取更多值,请在前面加入以下语句即可. while(model.canFetchMore()){ model.fetchMore(); } 该语句会获取更多的记录.
- Codeforces The Child and Toy
The Child and Toy time limit per test1 second On Children's Day, the child got a toy from Delayyy as ...
- dbvisualizer设置自动补全不显示模式名
- WPF多线程更新UI的一个解决途径
那么该如何解决这一问题呢?通常的做法是把耗时的函数放在线程池执行,然后切回主线程更新UI显示.前面的updateTime函数改写如下: private async void updateTime() ...
- hbase配置详解(转)
转自:http://www.cnblogs.com/viviman/archive/2013/03/21/2973539.html 1 准备工作 因为我只有一台机器,所以,一切都成为了伪分布,但是,其 ...
- 【串线篇】概述SpringMvc和spring整合
SpringMVC和Spring整合的目的:分工明确: SpringMVC的配置文件就来配置和网站转发逻辑以及网站功能有关的(视图解析器,文件上传解析器,支持ajax,xxx):springmvc.x ...
- Electron-vue实战(一)—搭建项目与安装Element UI
Electron-vue实战—搭建项目与安装Element UI 作者:狐狸家的鱼 本文链接 GitHub:sueRimn 一.新建项目1.初始化项目打开cmd,新建一个项目,我使用的是electro ...