手写朴素贝叶斯(naive_bayes)分类算法
朴素贝叶斯假设各属性间相互独立,直接从已有样本中计算各种概率,以贝叶斯方程推导出预测样本的分类。
为了处理预测时样本的(类别,属性值)对未在训练样本出现,从而导致概率为0的情况,使用拉普拉斯修正(假设属性值与类别均匀分布)。
代码及注释如下:
一、离散值
1,朴素贝叶斯算法计算相关参数并返回,预测使用这些参数即可
# 手写拉普拉斯修正的朴素贝叶斯
import numpy as np
import pandas as pd
def naive_bayes(data):
'''data:pandas.DataFrame'''
# 列名
attrs=data.columns
# 类别
labels=data[attrs[-1]].unique()
# 类别数
N=labels.size
# 样本总数
D=data.index.size
# c类样本概率
pc=np.empty(shape=(N,1))
# c类中,第i个属性取值为xi的概率,这里计算了所有,而非只针对测试样本,保存后predict时直接从里面取值即可
p_xc=[]
# 包含每个属性的可取值
features=[data[i].unique() for i in attrs[:-1]]
for i in range(N):
df=data[data[attrs[-1]]==labels[i]]
Dc=df[attrs[0]].count()
pc[i]=np.array([(Dc+1)/(D+N)])
p_c=[]
for j in range(len(features)):
values=features[j]
Ni=values.size
c_attr=[]
for value in values:
Dc_xi=df[df[attrs[j]]==value].index.size
c_attr.append((Dc_xi+1)/(Dc+Ni))
p_c.append(c_attr)
p_xc.append(p_c)
return p_xc,pc,N,features,labels
# 预测一个样本
def predict(x,p_xc,pc,num_class,features,labels):
result=[]
for i in range(num_class):
res=1.
c=p_xc[i]
for j in range(len(c)):
feature_j=c[j]
for k in range(len(feature_j)):
if x[j]==features[j][k]:
res*=feature_j[k]
result.append(pc[i][0]*res)
max_c=0
max_index=-1
for i in range(len(result)):
if result[i]>max_c:
max_c=result[i]
max_index=i
return result,labels[max_index]
# 预测多个样本
def predicts(x,p_xc,pc,num_class,features,labels):
result=[]
for data in x:
_,clazz=predict(data,p_xc,pc,num_class,features,labels)
result.append(clazz)
return result
2,使用西瓜集2.0训练及测试
def createDataSet(): dataSet = [
#
['青绿', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', '好瓜'],
#
['乌黑', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', '好瓜'],
#
['乌黑', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', '好瓜'],
#
['青绿', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', '好瓜'],
#
['浅白', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', '好瓜'],
#
['青绿', '稍蜷', '浊响', '清晰', '稍凹', '软粘', '好瓜'],
#
['乌黑', '稍蜷', '浊响', '稍糊', '稍凹', '软粘', '好瓜'],
#
['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '硬滑', '好瓜'], # ----------------------------------------------------
#
['乌黑', '稍蜷', '沉闷', '稍糊', '稍凹', '硬滑', '坏瓜'],
#
['青绿', '硬挺', '清脆', '清晰', '平坦', '软粘', '坏瓜'],
#
['浅白', '硬挺', '清脆', '模糊', '平坦', '硬滑', '坏瓜'],
#
['浅白', '蜷缩', '浊响', '模糊', '平坦', '软粘', '坏瓜'],
#
['青绿', '稍蜷', '浊响', '稍糊', '凹陷', '硬滑', '坏瓜'],
#
['浅白', '稍蜷', '沉闷', '稍糊', '凹陷', '硬滑', '坏瓜'],
#
['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '软粘', '坏瓜'],
#
['浅白', '蜷缩', '浊响', '模糊', '平坦', '硬滑', '坏瓜'],
#
['青绿', '蜷缩', '沉闷', '稍糊', '稍凹', '硬滑', '坏瓜']
] # 特征值列表
labels = ['色泽', '根蒂', '敲击', '纹理', '脐部', '触感','好坏']
dataset=pd.DataFrame(data=dataSet,columns=labels)
return dataset
3,训练及预测
这里预测使用训练数据,可以看到精度却不咋样,个人认为这跟样本太小、使用了修正(修正在大样本下的影响较小)及属性并非相互独立有关
dataset=createDataSet()
p_xc,pc,num_class,features,labels=naive_bayes(dataset) value=dataset[dataset.columns[:-1]].values
result=predicts(value,p_xc,pc,num_class,features,labels)
real=dataset[dataset.columns[-1]].values
df=pd.DataFrame([[result[i]==real[i] for i in range(len(result))]])
# 精度 0.8235294117647058
df.iloc[0].sum()/df.iloc[0].count()
二、连续值
1,贝叶斯方法
def normal_distribution(mean,var,x):
return np.power(np.e,-(x-mean)*(x-mean)/(2*var))/np.sqrt(2*np.pi*var)
# 连续值处理,假设数据服从正态分布,如上函数所示
def naive_bayes_2(X_train,y_train):
'''data:pandas.DataFrame'''
labels=list(set(y_train))
# 类别数
num_class=len(labels)
data=pd.DataFrame(X_train,columns=['l1','l2','l3','l4'])
data['label']=y_train
N=len(y_train)
# 均值和方差
means=[]
vals=[]
# c类样本概率
pc=np.empty(shape=(num_class,1))
# 对每一类求均值和方差
for i in range(num_class):
df=data[data['label']==labels[i]]
l=df.index.size
pc[i]=l/N
mean=[]
val=[]
# 各属性的均值和方差
for col in df.columns[:-1]:
mean.append(df[col].mean())
val.append(df[col].var())
means.append(mean)
vals.append(val) return means,vals,pc,labels
# 预测多个样本
def predict_2(x_test,means,vals,pc,labels):
num_class=len(labels)
results=[]
for x in x_test:
result=[]
for i in range(num_class):
res=1.
res*=pc[i][0]
j=0
for mean,val in zip(means[i],vals[i]):
res*=normal_distribution(mean,val,x[j])
j+=1
result.append(res)
results.append(labels[result.index(max(result))])
return results
2,使用sklearn中iris数据集
from sklearn.datasets import load_iris
data = load_iris() x=data['data']
y=data['target']
cols=data['target_names'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test=train_test_split(x,y,test_size=0.2,random_state=10)
3,训练及测试
means,vals,pc,labels=naive_bayes_2(X_train,y_train) results=predict_2(X_test,means,vals,pc,labels) from sklearn.metrics import accuracy_score
# 精度100%
accuracy_score(results,y_test)
三、总结
例举了2个例子,离散值的样本少,使用了修正,精度不咋样,连续值的精度100%,取得不错的效果,也说明各个类别下的各个特征基本符合正态分布。
手写朴素贝叶斯(naive_bayes)分类算法的更多相关文章
- 3.朴素贝叶斯和KNN算法的推导和python实现
前面一个博客我们用Scikit-Learn实现了中文文本分类的全过程,这篇博客,着重分析项目最核心的部分分类算法:朴素贝叶斯算法以及KNN算法的基本原理和简单python实现. 3.1 贝叶斯公式的推 ...
- 机器学习集成算法--- 朴素贝叶斯,k-近邻算法,决策树,支持向量机(SVM),Logistic回归
朴素贝叶斯: 是使用概率论来分类的算法.其中朴素:各特征条件独立:贝叶斯:根据贝叶斯定理.这里,只要分别估计出,特征 Χi 在每一类的条件概率就可以了.类别 y 的先验概率可以通过训练集算出 k-近邻 ...
- 朴素贝叶斯算法——实现新闻分类(Sklearn实现)
1.朴素贝叶斯实现新闻分类的步骤 (1)提供文本文件,即数据集下载 (2)准备数据 将数据集划分为训练集和测试集:使用jieba模块进行分词,词频统计,停用词过滤,文本特征提取,将文本数据向量化 停用 ...
- Python机器学习笔记:朴素贝叶斯算法
朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向 ...
- [机器学习] 分类 --- Naive Bayes(朴素贝叶斯)
Naive Bayes-朴素贝叶斯 Bayes' theorem(贝叶斯法则) 在概率论和统计学中,Bayes' theorem(贝叶斯法则)根据事件的先验知识描述事件的概率.贝叶斯法则表达式如下所示 ...
- 统计学习方法与Python实现(三)——朴素贝叶斯法
统计学习方法与Python实现(三)——朴素贝叶斯法 iwehdio的博客园:https://www.cnblogs.com/iwehdio/ 1.定义 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设 ...
- scikit-learn 朴素贝叶斯类库使用小结
之前在朴素贝叶斯算法原理小结这篇文章中,对朴素贝叶斯分类算法的原理做了一个总结.这里我们就从实战的角度来看朴素贝叶斯类库.重点讲述scikit-learn 朴素贝叶斯类库的使用要点和参数选择. 1. ...
- 机器学习Sklearn系列:(四)朴素贝叶斯
3--朴素贝叶斯 原理 朴素贝叶斯本质上就是通过贝叶斯公式来对得到类别概率,但区别于通常的贝叶斯公式,朴素贝叶斯有一个默认条件,就是特征之间条件独立. 条件概率公式: \[P(B|A) = \frac ...
- Mahout朴素贝叶斯文本分类
Mahout朴素贝叶斯文本分类算法 Mahout贝叶斯分类器按照官方的说法,是按照<Tackling the PoorAssumptions of Naive Bayes Text Classi ...
随机推荐
- Acwing-280-陪审团(背包dp?)
链接: https://www.acwing.com/problem/content/282/ 题意: 在一个遥远的国家,一名嫌疑犯是否有罪需要由陪审团来决定. 陪审团是由法官从公民中挑选的. 法官先 ...
- [Go] 使用读写锁对map资源进行安全处理
当需要有一个全局性的map集合资源进行增删改数据时,需要对该map资源增加读写锁,防止并发时出现安全问题 下面的类就是举例 , 属性中的Conns模拟存储一些资源,对这些资源进行并发的增加数据,使用写 ...
- 31.整数中1出现的次数(从1到n整数中1出现的次数)
题目描述 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了. ...
- 在echart组件下用canvans画三角形
//使用的canvans绘制的三角形 drawArrow(){ var canvas = document.createElement('canvas');//创建一个元素 canvas.width ...
- 一次linux站点安装经验
之前了解了一点,刚过完年回来,顺便研究了一下小程序. http://s.w7.cc/index.php?c=wiki&do=view&id=1&list=84 先申请了一个li ...
- 在HTML中引入CSS的方式
有 4 种方式可以在 HTML 中引入 CSS.其中有 2 种方式是在 HTML 文件中直接添加 CSS 代码,另外两种是引入 外部 CSS 文件. ㈠内联方式 内联方式指的是直接在 HTML 标 ...
- vue 修饰符sync
从 Vue 2.3.0 起,重新引入了 .sync 修饰符,作为一个编译时的语法糖存在.它会被扩展为一个自动更新父组件属性的 v-on 监听器. 实例: 父组件:<syTree :refillD ...
- 我不熟悉的string类
我不常用的string函数 多的不说,直接上: assign函数 string& assign(const char *s); //把字符串s赋给当前的字符串 string& assi ...
- [LOJ3106][TJOI2019]唱、跳、rap和篮球:DP+生成函数+NTT+容斥原理
分析 令\(f(i)\)表示共\(i\)组同学讨论cxk的位置的方案数(不考虑其他位置上的人的爱好),这个数组可以很容易地通过依次考虑每个位置是否是四个人中最后一个人的位置来递推求解,时间复杂度\(O ...
- Ubuntu18.04安装rabbitvcs svn图形化客户端和简单实用
1.1 自带source源里面查找rabbitvcs信息 sudo apt search rabbitvcs 1.2 安装rabbitvcs sudo apt install rabbitvcs- ...