题意 : 给出 m 个单词,每一个单词有一个权重,如果一个字符串包含了这些单词,那么意味着这个字符串拥有了其权重,问你构成长度为 n 且权重最大的字符串是什么 ( 若有权重相同的,则输出最短且字典序最小的 )

分析 : 如果你做过 POJ 2778 或者 HDU 2243 以及诸如此类的题目,那么这道题的难点就不在构建 Trie图上了,没有接触过Trie图的建议先了解,下面进入正题。这道题相对于普通的 AC自动机orTrie图 + DP 的题目而言,共同点是都是利用 Trie图进行状态的转移,现在增加了权重以及要求输出具体的字符串答案。我们定义 DP[i][j] 为构建了长度为 i 且最后一个字符为 j 的字符串最大权重,由于每一个状态都对应一个字符串,所以再构建一个三维字符数组 s[i][j][k] 表示当前 i、j 状态下具体的字符串为 s[i][j][0~k-1],那么状态转移方程就是

DP[i+1][ Trie[j][k] ] = max( DP[i+1][ Trie[j][k] ] , DP[i][j] + Trie[j][k].val )

( Trie[j][k] 代表 j 状态可以一步转移到 k状态,如果你做过类似题目,那你不会陌生)

在状态转移的时候需要时时更新 s[i][j][k] 这个三维数组,当取得更优值的时候需要更新,最后只要在DP的过程当中记录最优的权重、状态i、j下标然后DP结束后输出即可。当然有个小优化,这种DP属于向前的DP,如果当前DP值是你设置的初值,那么它是没意义的,可以直接continue,因为它不会对后面的DP值产生影响。

#include<string.h>
#include<stdio.h>
#include<queue>
using namespace std;
;
;

][];
][][];///存储每一个状态所代表的具体字符串

struct Aho{
    struct StateTable{
        int Next[Letter];
        int fail, val;
    }Node[Max_Tot];
    int Size;
    queue<int> que;

    inline void init(){
        while(!que.empty()) que.pop();
        memset(Node[].Next, , ].Next));
        Node[].fail = Node[].val = ;
        Size = ;
    }

    inline void insert(char *s, int val){
        ;
        ; s[i]; i++){
            int idx = s[i] - 'a';
            if(!Node[now].Next[idx]){
                memset(Node[Size].Next, , sizeof(Node[Size].Next));
                Node[Size].fail = Node[Size].val = ;
                Node[now].Next[idx] = Size++;
            }
            now = Node[now].Next[idx];
        }
        Node[now].val = val;
    }

    inline void BuildFail(){
        Node[].fail = ;
        ; i<Letter; i++){
            ].Next[i]){
                Node[Node[].Next[i]].fail = ;
                que.push(Node[].Next[i]);
            }].Next[i] = ;
        }
        while(!que.empty()){
            int top = que.front(); que.pop();
            Node[top].val += Node[Node[top].fail].val;///这里需要注意!
            ; i<Letter; i++){
                int &v = Node[top].Next[i];
                if(v){
                    que.push(v);
                    Node[v].fail = Node[Node[top].fail].Next[i];
                }else v = Node[Node[top].fail].Next[i];
            }
        }
    }
}ac;
][];
int main(void)
{
    int nCase;
    scanf("%d", &nCase);
    while(nCase--){
        int n, m;
        scanf("%d %d", &n, &m);
        ; i<m; i++)
            scanf("%s", tmp[i]);
        int tmpVal;
        ac.init();
        ; i<m; i++){
            scanf("%d", &tmpVal);
            ac.insert(tmp[i], tmpVal);
        }
        ac.BuildFail();

        ; i<=n; i++){///将所有DP的值赋为 -1
            ; j<ac.Size; j++){
                dp[i][j] = -;
                s[i][j][] = '\0';
            }
        }

        dp[][] = ;///定义初始状态

        ];
        int ii, jj, MaxSum;
        ii = jj = MaxSum = ;
        ; i<n; i++){
            ; j<ac.Size; j++){
                ){///如果当前dp值不是初始状态则进入if,否则其dp值毫无意义,直接跳过
                    ; k>=; k--){///一开始我是想谋求字典序最小而从后往前,但是WA一发后我发现我错了,实际上顺序不重要
                        ;
                        int newj = ac.Node[j].Next[k];
                        int sum = dp[i][j] + ac.Node[ newj ].val;
                        if(sum > dp[newi][newj]){
                            dp[newi][newj] = sum;
                            strcpy(s[newi][newj], s[i][j]);
                            int len = strlen(s[i][j]);
                            s[newi][newj][len] = k+'a';
                            s[newi][newj][len+] = '\0';
                        }else if(sum == dp[newi][newj]){///谋求字典序最小应该实在dp值相等情况下
                            strcpy(str, s[i][j]);
                            int len = strlen(str);
                            str[len] = 'a'+k;
                            str[len+] = '\0';
                            )
                                strcpy(s[newi][newj], str);
                        }

                        if(dp[newi][newj] >= MaxSum){///更新一下最终的答案
                            if(dp[newi][newj] == MaxSum){
                                int L1 = strlen(s[newi][newj]);
                                int L2 = strlen(s[ii][jj]);
                                )
                                    ii = newi, jj = newj;
                            }else{
                                MaxSum = dp[newi][newj];
                                ii = newi, jj = newj;
                            }
                        }

                    }
                }
            }
        }

        ) puts("");///如果最后权值依旧是 0 那么输出空串
        else puts(s[ii][jj]);
    }
    ;
}

HDU 2296 Ring ( Trie图 && DP && DP状态记录)的更多相关文章

  1. HDU 2296 Ring (AC自动机+DP)

    Ring Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  2. HDU 2296 Ring [AC自动机 DP 打印方案]

    Ring Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submissio ...

  3. BZOJ3530: [Sdoi2014]数数(Trie图,数位Dp)

    Description 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串.例如当S=(22,333,0233)时,233是幸运数,2333.20233.3 ...

  4. HDU 2296:Ring

    Problem Description For the hope of a forever love, Steven is planning to send a ring to Jane with a ...

  5. HDU 2296 Ring -----------AC自动机,其实我想说的是怎么快速打印字典序最小的路径

    大冥神的代码,以后能贴的机会估计就更少了....所以本着有就贴的好习惯,= =....直接贴 #include <bits/stdc++.h> using LL = long long ; ...

  6. HDU 4511 小明系列故事——女友的考验 ( Trie图 && DP )

    题意 :  给出编号从1 ~ n 的 n 个平面直角坐标系上的点,求从给出的第一个点出发到达最后一个点的最短路径,其中有两种限制,其一就是只能从编号小的点到达编号大的点,再者不能走接下来给出的 m 个 ...

  7. HDU 4057 Rescue the Rabbit ( AC自动机 + 状态压缩DP )

    模板来自notonlysuccess. 模式串只有10个,并且重复出现的分值不累加,因此很容易想到状态压缩. 将模式串加入AC自动机,最多有10*100个状态. dp[i][j][k]:串长为i,在T ...

  8. POJ 1625 Censored ( Trie图 && DP && 高精度 )

    题意 : 给出 n 个单词组成的字符集 以及 p 个非法串,问你用字符集里面的单词构造长度为 m 的单词的方案数有多少种? 分析 :先构造出 Trie 图方便进行状态转移,这与在 POJ 2278 中 ...

  9. HDU 3341 Lost's revenge ( Trie图 && 状压DP && 数量限制类型 )

    题意 : 给出 n 个模式串,最后给出一个主串,问你主串打乱重组的情况下,最多能够包含多少个模式串. 分析 : 如果你做过类似 Trie图 || AC自动机 + DP 类似的题目的话,那么这道题相对之 ...

随机推荐

  1. linux python 修改环境变量 添加自定义模块路径

    举一个很简单的例子,如果你发现一个包或者模块,明明是有的,但是会发生这样的错误: >>> from algorithm import *Traceback (most recent ...

  2. Django 多数据库联用(同一个APP的models里不同class用不同数据库)

    很多网站有多数据库联用的文章,如自强学堂http://code.ziqiangxuetang.com/django/django-multi-database.html 大都只讲解如何让不同的app对 ...

  3. 【ABAP系列】SAP ABAP MIR7预制凭证BAPI

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP MIR7预制凭 ...

  4. LeetCode算法题-Positions of Large Groups(Java实现)

    这是悦乐书的第323次更新,第346篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第193题(顺位题号是830).在由小写字母组成的字符串S中,那些相同的连续字符会组成集 ...

  5. 关于BeautifulSoup4 解析器的说明

    一.解析器概述 如同前几章笔记,当我们输入: soup=BeautifulSoup(response.body) 对网页进行析取时,并未规定解析器,此时使用的是python内部默认的解析器“html. ...

  6. echars 饼图 --》二次封装

    <template> <!-- 饼状图 1. 调用页面引入 import EcharsPie from '@/components/echarsPie.vue'; 注:自定义的组件名 ...

  7. 20191112 Spring Boot官方文档学习(4.3)

    4.3.Profiles Spring Profiles提供了一种隔离部分应用程序配置并使之仅在某些环境中可用的方法.任何@Component,@Configuration或@Configuratio ...

  8. 华南理工大学 “三七互娱杯” C HRY and Abaas

    https://ac.nowcoder.com/acm/contest/874/C 题目大意是两人俄罗斯轮盘赌 n个位置 有m个子弹 已知哪些位置上有子弹 子弹打出 游戏结束 求第i次扣动扳机游戏才结 ...

  9. 在excel中如何计算两个时间之间的差[转]

    因为时间是由序列号所代表的,用户可以用较晚的时间减去较早的时间以得到间隔.例如,单元格A3含有5:30,单元格B3含有14:00,下面的公式返回8:30(间隔8小时30分). =B3-A3 然而,如果 ...

  10. Linux0.11之初识Makefile/build.c

    前言 Makefile对于从来没有接触过的人来说是相当别扭的(比如我),但它确实又是非常重要的,它描述了一个Image是如何形成的,理解它也许并不能帮我解决实际问题,而且编写Makefile的工作也许 ...