Codeforces 1162E Thanos Nim(博弈)
一道有意思的博弈题。首先我们考虑一种必败情况,那就是有一方拿光了一堆石子,显然对方是必胜,此时对方可以全部拿走其中的n/2,那么轮到自己时就没有n/2堆,所以此时是必败态。我们先对所有石子堆sort,设最少的石子堆a[i]的石子数为a,有b堆这样的石子,当b<=n/2的时候,先手可以将另外一半的石子拿走至与前一半石子堆的数量一致( {a1 a2 ... an/2 a/n2+1... an} 变成 {a1 a2 ...an/2 a1 a2.... an/2} ) ,那么接下来无论对方拿走多少石子,我们都可以模仿对方的策略,显然,对方会先拿控一堆石子走到必败态,那么先手就必赢。在考虑一种情况,当b>n/2时,也就是最少的石子堆数量占一半以上,那么无论先手怎么取,后手都可以将剩下的石子堆保持最少的石子堆有一半以上(无论对方怎么取,我们只需要把n/2个石子堆数量保持与最小的一致),那么此时先手是一定会先拿空一堆石子,那么先手必败。综上,也就是判断最少石子堆数量是否有一半以上即可。
// ——By DD_BOND //#include<bits/stdc++.h>
#include<functional>
#include<algorithm>
#include<iostream>
#include<sstream>
#include<iomanip>
#include<climits>
#include<cstring>
#include<cstdlib>
#include<cstddef>
#include<cstdio>
#include<memory>
#include<vector>
#include<cctype>
#include<string>
#include<cmath>
#include<queue>
#include<deque>
#include<ctime>
#include<stack>
#include<map>
#include<set> #define fi first
#define se second
#define MP make_pair
#define pb push_back
#define INF 0x3f3f3f3f
#define pi 3.1415926535898
#define lowbit(a) (a&(-a))
#define lson l,(l+r)/2,rt<<1
#define rson (l+r)/2+1,r,rt<<1|1
#define Min(a,b,c) min(a,min(b,c))
#define Max(a,b,c) max(a,max(b,c))
#define debug(x) cerr<<#x<<"="<<x<<"\n"; using namespace std; typedef long long ll;
typedef pair<int,int> P;
typedef pair<ll,ll> Pll;
typedef unsigned long long ull; const ll LLMAX=2e18;
const int MOD=1e9+;
const double eps=1e-;
const int MAXN=1e6+; inline ll sqr(ll x){ return x*x; }
inline int sqr(int x){ return x*x; }
inline double sqr(double x){ return x*x; }
ll __gcd(ll a,ll b){ return b==? a: __gcd(b,a%b); }
ll qpow(ll a,ll n){ll sum=;while(n){if(n&)sum=sum*a%MOD;a=a*a%MOD;n>>=;}return sum;}
inline int dcmp(double x){ if(fabs(x)<eps) return ; return (x>? : -); } int a[MAXN]; int main(void)
{
ios::sync_with_stdio(false); cin.tie(); cout.tie();
int n,cnt=; cin>>n;
for(int i=;i<n;i++) cin>>a[i];
sort(a,a+n);
if(a[]==a[n/]) cout<<"Bob"<<endl;
else cout<<"Alice"<<endl;
return ;
}
Codeforces 1162E Thanos Nim(博弈)的更多相关文章
- CodeForces - 1162E Thanos Nim (博弈论)
Alice and Bob are playing a game with nn piles of stones. It is guaranteed that nn is an even number ...
- codeforces 812E Sagheer and Apple Tree(思维、nim博弈)
codeforces 812E Sagheer and Apple Tree 题意 一棵带点权有根树,保证所有叶子节点到根的距离同奇偶. 每次可以选择一个点,把它的点权删除x,它的某个儿子的点权增加x ...
- Forethought Future Cup - Final Round (Onsite Finalists Only) C. Thanos Nim 题解(博弈+思维)
题目链接 题目大意 给你n堆石子(n为偶数),两个人玩游戏,每次选取n/2堆不为0的石子,然后从这n/2堆石子中丢掉一些石子(每一堆丢弃的石子数量可以不一样,但不能为0),若这次操作中没有n/2堆不为 ...
- HDU 2509 Nim博弈变形
1.HDU 2509 2.题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败. 3.总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客. 传送门 首先给出结 ...
- HDU 1907 Nim博弈变形
1.HDU 1907 2.题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输. 3.总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门 分析:经典的Nim博弈的一点变形. ...
- zoj3591 Nim(Nim博弈)
ZOJ 3591 Nim(Nim博弈) 题目意思是说有n堆石子,Alice只能从中选出连续的几堆来玩Nim博弈,现在问Alice想要获胜有多少种方法(即有多少种选择方式). 方法是这样的,由于Nim博 ...
- hdu 1907 John&& hdu 2509 Be the Winner(基础nim博弈)
Problem Description Little John is playing very funny game with his younger brother. There is one bi ...
- 关于NIM博弈结论的证明
关于NIM博弈结论的证明 NIM博弈:有k(k>=1)堆数量不一定的物品(石子或豆粒…)两人轮流取,每次只能从一堆中取若干数量(小于等于这堆物品的数量)的物品,判定胜负的条件就是,最后一次取得人 ...
- HDU - 1850 Nim博弈
思路:可以对任意一堆牌进行操作,根据Nim博弈定理--所有堆的数量异或值为0就是P态,否则为N态,那么直接对某堆牌操作能让所有牌异或值为0即可,首先求得所有牌堆的异或值,然后枚举每一堆,用已经得到的异 ...
随机推荐
- Archlinux笔记本安装手记
最近看着Linux Mint里一揽子乱七八糟的应用和散布各处的配置文件愈发烦躁,便想体验下大名鼎鼎的Arch,网上的帖子们把Arch Linux的安装难度描述的非常可怕,但实际上跟着Wiki一步一步来 ...
- 8-基于双TMS320C6678 + XC7K420T的6U CPCI Express高速数据处理平台
基于双TMS320C6678 + XC7K420T的6U CPCI Express高速数据处理平台 1.板卡概述 板卡由我公司自主研发,基于6UCPCI架构,处理板包含双片TI DSP TMS320C ...
- 2018ICPC银川 L Continuous Intervals 单调栈 线段树
题意:给你一个序列,问你这个序列有多少个子区间,满足把区间里的数排序之后相邻两个数之间的差 <= 1 ? 思路:https://blog.csdn.net/u013534123/article/ ...
- CS与BS的比较
对象 硬件环境 客户端要 求 软件安装 升级和维护 安全性 C/S 用户固定,并且处于相同区域, 要求拥有相同的操作系统. 客户端的计算机电脑配置要求较高. 每一个客户端都必须安装 ...
- css 伪类选择器:checked实例讲解
css :checked伪类选择器介绍 css :checked伪类选择器用于选择匹配所有被选中的单选按钮(radio)或复选框(checkbox),你可以结合:checked伪类选择器和:not选择 ...
- P4206[NOI2005]聪聪与可可
链接P4206 [NOI2005]聪聪与可可 类似于开车旅行,如果老鼠确定了那么猫的路线是确定的. 预处理\(g_{i,j}\)表示老鼠在\(i\)号点,猫的下一步方向,\(Bfs\)就行了 设\(f ...
- jmeter性能工具 之监控cpu,内存等信息(四)
1.jmeter 本身不支持直接监控 cpu,内存等信息,需要去官网下载控件 JMeterPlugins-Standard-1.4.0.zip 解压好将其中\lib\ext\JMeterPlug ...
- 19 如何在String和Byte[]对象之间进行转换?
- 帝国CMS编辑器粘贴Word图片
图片的复制无非有两种方法,一种是图片直接上传到服务器,另外一种转换成二进制流的base64码 目前限chrome浏览器使用,但是项目要求需要支持所有的浏览器,包括Windows和macOS系统.没有办 ...
- php大文件断点续传
该项目核心就是文件分块上传.前后端要高度配合,需要双方约定好一些数据,才能完成大文件分块,我们在项目中要重点解决的以下问题. * 如何分片: * 如何合成一个文件: * 中断了从哪个分片开始. 如何分 ...