Pandas的高级操作
pandas数据处理
1. 删除重复元素
使用duplicated()函数检测重复的行,返回元素为布尔类型的Series对象,每个元素对应一行,如果该行不是第一次出现,则元素为True
keep参数:指定保留哪一重复的行数据
创建具有重复元素行的DataFrame
import numpy as np
import pandas as pd
from pandas import DataFrame
# 创建一个df
df = DataFrame(data=np.random.randint(0,100,size=(12,7)))
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
0 | 18 | 75 | 98 | 68 | 33 | 35 | 15 |
1 | 48 | 71 | 36 | 34 | 41 | 17 | 46 |
2 | 3 | 28 | 81 | 21 | 86 | 53 | 85 |
3 | 15 | 35 | 35 | 90 | 63 | 83 | 14 |
4 | 12 | 36 | 65 | 79 | 25 | 53 | 95 |
5 | 98 | 63 | 4 | 58 | 35 | 64 | 80 |
6 | 31 | 61 | 23 | 33 | 80 | 53 | 60 |
7 | 52 | 47 | 60 | 58 | 54 | 35 | 17 |
8 | 7 | 92 | 42 | 61 | 31 | 40 | 56 |
9 | 76 | 45 | 30 | 42 | 74 | 83 | 53 |
10 | 69 | 2 | 89 | 99 | 12 | 51 | 62 |
11 | 17 | 86 | 1 | 76 | 40 | 34 | 41 |
# 手动将df的某几行设置成相同的内容
df.iloc[1] = [6,6,6,6,6,6,6]
df.iloc[8] = [6,6,6,6,6,6,6]
df.iloc[5] = [6,6,6,6,6,6,6]
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
0 | 18 | 75 | 98 | 68 | 33 | 35 | 15 |
1 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
2 | 3 | 28 | 81 | 21 | 86 | 53 | 85 |
3 | 15 | 35 | 35 | 90 | 63 | 83 | 14 |
4 | 12 | 36 | 65 | 79 | 25 | 53 | 95 |
5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
6 | 31 | 61 | 23 | 33 | 80 | 53 | 60 |
7 | 52 | 47 | 60 | 58 | 54 | 35 | 17 |
8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
9 | 76 | 45 | 30 | 42 | 74 | 83 | 53 |
10 | 69 | 2 | 89 | 99 | 12 | 51 | 62 |
11 | 17 | 86 | 1 | 76 | 40 | 34 | 41 |
- 使用drop_duplicates()函数删除重复的行
- drop_duplicates(keep='first/last'/False)
df.drop_duplicates(keep='last') # 保留最后一个重复的行
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
0 | 26 | 9 | 31 | 11 | 38 | 46 | 22 |
2 | 89 | 24 | 53 | 28 | 64 | 89 | 40 |
3 | 7 | 80 | 43 | 91 | 32 | 95 | 6 |
4 | 96 | 92 | 58 | 55 | 82 | 73 | 21 |
6 | 43 | 1 | 13 | 54 | 24 | 34 | 43 |
7 | 75 | 32 | 88 | 85 | 40 | 29 | 41 |
8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
9 | 93 | 3 | 62 | 4 | 60 | 51 | 78 |
10 | 58 | 11 | 63 | 42 | 62 | 30 | 10 |
11 | 89 | 93 | 96 | 49 | 23 | 40 | 57 |
2. 映射
1) replace()函数:替换元素
DataFrame替换操作
单值替换
- 普通替换: 替换所有符合要求的元素:to_replace=15,value='e'
- 按列指定单值替换: to_replace={列标签:替换值} value='value'
多值替换
- 列表替换: to_replace=[] value=[]
- 字典替换(推荐) to_replace={to_replace:value,to_replace:value}
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
0 | 26 | 9 | 31 | 11 | 38 | 46 | 22 |
1 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
2 | 89 | 24 | 53 | 28 | 64 | 89 | 40 |
3 | 7 | 80 | 43 | 91 | 32 | 95 | 6 |
4 | 96 | 92 | 58 | 55 | 82 | 73 | 21 |
5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
6 | 43 | 1 | 13 | 54 | 24 | 34 | 43 |
7 | 75 | 32 | 88 | 85 | 40 | 29 | 41 |
8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
9 | 93 | 3 | 62 | 4 | 60 | 51 | 78 |
10 | 58 | 11 | 63 | 42 | 62 | 30 | 10 |
11 | 89 | 93 | 96 | 49 | 23 | 40 | 57 |
注意:DataFrame中,无法使用method和limit参数
df.replace(to_replace=6,value='six') # 将数据中的所有6替换成six,默认不改变原表
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
0 | 18 | 75 | 98 | 68 | 33 | 35 | 15 |
1 | six | six | six | six | six | six | six |
2 | 3 | 28 | 81 | 21 | 86 | 53 | 85 |
3 | 15 | 35 | 35 | 90 | 63 | 83 | 14 |
4 | 12 | 36 | 65 | 79 | 25 | 53 | 95 |
5 | six | six | six | six | six | six | six |
6 | 31 | 61 | 23 | 33 | 80 | 53 | 60 |
7 | 52 | 47 | 60 | 58 | 54 | 35 | 17 |
8 | six | six | six | six | six | six | six |
9 | 76 | 45 | 30 | 42 | 74 | 83 | 53 |
10 | 69 | 2 | 89 | 99 | 12 | 51 | 62 |
11 | 17 | 86 | 1 | 76 | 40 | 34 | 41 |
df.replace(to_replace={6:'six'}) # 效果同上
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
0 | 26 | 9 | 31 | 11 | 38 | 46 | 22 |
1 | six | six | six | six | six | six | six |
2 | 89 | 24 | 53 | 28 | 64 | 89 | 40 |
3 | 7 | 80 | 43 | 91 | 32 | 95 | six |
4 | 96 | 92 | 58 | 55 | 82 | 73 | 21 |
5 | six | six | six | six | six | six | six |
6 | 43 | 1 | 13 | 54 | 24 | 34 | 43 |
7 | 75 | 32 | 88 | 85 | 40 | 29 | 41 |
8 | six | six | six | six | six | six | six |
9 | 93 | 3 | 62 | 4 | 60 | 51 | 78 |
10 | 58 | 11 | 63 | 42 | 62 | 30 | 10 |
11 | 89 | 93 | 96 | 49 | 23 | 40 | 57 |
df.replace(to_replace={5:6},value='six') # 将第5列中的6,替换成six
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
0 | 26 | 9 | 31 | 11 | 38 | 46 | 22 |
1 | 6 | 6 | 6 | 6 | 6 | six | 6 |
2 | 89 | 24 | 53 | 28 | 64 | 89 | 40 |
3 | 7 | 80 | 43 | 91 | 32 | 95 | 6 |
4 | 96 | 92 | 58 | 55 | 82 | 73 | 21 |
5 | 6 | 6 | 6 | 6 | 6 | six | 6 |
6 | 43 | 1 | 13 | 54 | 24 | 34 | 43 |
7 | 75 | 32 | 88 | 85 | 40 | 29 | 41 |
8 | 6 | 6 | 6 | 6 | 6 | six | 6 |
9 | 93 | 3 | 62 | 4 | 60 | 51 | 78 |
10 | 58 | 11 | 63 | 42 | 62 | 30 | 10 |
11 | 89 | 93 | 96 | 49 | 23 | 40 | 57 |
2) map()函数
新建一列 , map函数并不是df的方法,而是series的方法
map()可以映射新一列数据
map()中可以使用lambd表达式
map()中可以使用方法,可以是自定义的方法
eg:map({to_replace:value})
注意 map()中不能使用sum之类的函数,for循环
新增一列:给df中,添加一列,该列的值为中文名对应的英文名
dic = {
'name':['张三','周杰伦','张三'],
'salary':[20000,10000,20000]
}
df = DataFrame(data=dic)
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
name | salary | |
---|---|---|
0 | 张三 | 20000 |
1 | 周杰伦 | 10000 |
2 | 张三 | 20000 |
# 映射关系表
dic = {
'张三':'tom',
'周杰伦':'jay'
}
df['e_name'] = df['name'].map(dic)
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
name | salary | e_name | |
---|---|---|---|
0 | 张三 | 20000 | tom |
1 | 周杰伦 | 10000 | jay |
2 | 张三 | 20000 | tom |
map当做一种运算工具,至于执行何种运算,是由map函数的参数决定的(参数:lambda,函数)
- 使用自定义函数
def after_sal(s):
return s - (s-3000)*0.5
# 超过3000部分的钱缴纳50%的税
df['after_sal'] = df['salary'].map(after_sal)
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
name | salary | e_name | after_sal | |
---|---|---|---|---|
0 | 张三 | 20000 | tom | 11500.0 |
1 | 周杰伦 | 10000 | jay | 6500.0 |
2 | 张三 | 20000 | tom | 11500.0 |
df['after_sal'] = df['salary'].apply(after_sal) # apply效率高于map
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
name | salary | e_name | after_sal | |
---|---|---|---|---|
0 | 张三 | 20000 | tom | 11500.0 |
1 | 周杰伦 | 10000 | jay | 6500.0 |
2 | 张三 | 20000 | tom | 11500.0 |
- 使用lambda表达式
df['after_sal'] = df['salary'].apply(lambda x:x-(x-3000)*0.5) # 或map
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
name | salary | e_name | after_sal | |
---|---|---|---|---|
0 | 张三 | 20000 | tom | 11500.0 |
1 | 周杰伦 | 10000 | jay | 6500.0 |
2 | 张三 | 20000 | tom | 11500.0 |
注意:并不是任何形式的函数都可以作为map的参数。只有当一个函数具有一个参数且有返回值,那么该函数才可以作为map的参数。
3. 使用聚合操作对数据异常值检测和过滤
使用df.std()函数可以求得DataFrame对象每一列的标准差
- 创建一个1000行3列的df 范围(0-1),求其每一列的标准差
df = DataFrame(data=np.random.random(size=(1000,3)),columns=['A','B','C'])
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | C | |
---|---|---|---|
0 | 0.056365 | 0.080972 | 0.378327 |
1 | 0.371930 | 0.007791 | 0.318345 |
2 | 0.140999 | 0.921772 | 0.752930 |
3 | 0.877110 | 0.447756 | 0.760049 |
4 | 0.212178 | 0.143772 | 0.621486 |
5 | 0.255404 | 0.195473 | 0.008677 |
6 | 0.011568 | 0.308934 | 0.882607 |
7 | 0.470868 | 0.080049 | 0.285998 |
8 | 0.659013 | 0.794802 | 0.270541 |
9 | 0.315826 | 0.814653 | 0.906056 |
10 | 0.892474 | 0.301340 | 0.687254 |
11 | 0.015484 | 0.567598 | 0.043682 |
12 | 0.957620 | 0.967676 | 0.063608 |
13 | 0.102506 | 0.490077 | 0.235902 |
14 | 0.099083 | 0.778190 | 0.451824 |
15 | 0.023148 | 0.074169 | 0.589411 |
16 | 0.425894 | 0.772662 | 0.797658 |
17 | 0.939475 | 0.773502 | 0.766101 |
18 | 0.330299 | 0.984615 | 0.346554 |
19 | 0.882735 | 0.237546 | 0.847036 |
20 | 0.578589 | 0.730879 | 0.751632 |
21 | 0.504627 | 0.716272 | 0.386102 |
22 | 0.424879 | 0.231262 | 0.590047 |
23 | 0.580738 | 0.675268 | 0.726104 |
24 | 0.507248 | 0.136465 | 0.463764 |
25 | 0.421517 | 0.814806 | 0.449040 |
26 | 0.275373 | 0.935430 | 0.525679 |
27 | 0.404031 | 0.221492 | 0.730966 |
28 | 0.779142 | 0.063435 | 0.120807 |
29 | 0.618392 | 0.535934 | 0.554632 |
... | ... | ... | ... |
970 | 0.378107 | 0.687434 | 0.567923 |
971 | 0.876770 | 0.443219 | 0.236627 |
972 | 0.486757 | 0.416836 | 0.524889 |
973 | 0.886021 | 0.203959 | 0.789022 |
974 | 0.838247 | 0.279468 | 0.333581 |
975 | 0.762230 | 0.352878 | 0.550439 |
976 | 0.044568 | 0.680916 | 0.350743 |
977 | 0.031232 | 0.029839 | 0.918445 |
978 | 0.323142 | 0.686965 | 0.978349 |
979 | 0.746471 | 0.081773 | 0.729567 |
980 | 0.810169 | 0.793025 | 0.993532 |
981 | 0.480849 | 0.321984 | 0.233431 |
982 | 0.491794 | 0.056681 | 0.429988 |
983 | 0.278019 | 0.105290 | 0.435492 |
984 | 0.480974 | 0.098199 | 0.958667 |
985 | 0.465396 | 0.806955 | 0.668972 |
986 | 0.602675 | 0.966963 | 0.338542 |
987 | 0.051971 | 0.105833 | 0.132917 |
988 | 0.416362 | 0.861777 | 0.832573 |
989 | 0.951651 | 0.002912 | 0.942564 |
990 | 0.274033 | 0.071102 | 0.941272 |
991 | 0.632913 | 0.807060 | 0.540686 |
992 | 0.035006 | 0.526970 | 0.058584 |
993 | 0.368957 | 0.395593 | 0.210440 |
994 | 0.692847 | 0.655492 | 0.877564 |
995 | 0.245593 | 0.003551 | 0.913750 |
996 | 0.374804 | 0.311604 | 0.680521 |
997 | 0.355928 | 0.924330 | 0.224949 |
998 | 0.923060 | 0.834740 | 0.275359 |
999 | 0.905336 | 0.482290 | 0.722851 |
1000 rows × 3 columns
对df应用筛选条件,去除标准差太大的数据:假设过滤条件为 C列数据大于两倍的C列标准差
twice_std = df['C'].std() * 2
twice_std
0.5714973528631762
~(df['C'] > twice_std)
0 True
1 True
2 False
3 False
4 False
5 True
6 False
7 True
8 True
9 False
10 False
11 True
12 True
13 True
14 True
15 False
16 False
17 False
18 True
19 False
20 False
21 True
22 False
23 False
24 True
25 True
26 True
27 False
28 True
29 True
...
970 True
971 True
972 True
973 False
974 True
975 True
976 True
977 False
978 False
979 False
980 False
981 True
982 True
983 True
984 False
985 False
986 True
987 True
988 False
989 False
990 False
991 True
992 True
993 True
994 False
995 False
996 False
997 True
998 True
999 False
Name: C, Length: 1000, dtype: bool
df.loc[~(df['C'] > twice_std)]
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | B | C | |
---|---|---|---|
0 | 0.056365 | 0.080972 | 0.378327 |
1 | 0.371930 | 0.007791 | 0.318345 |
5 | 0.255404 | 0.195473 | 0.008677 |
7 | 0.470868 | 0.080049 | 0.285998 |
8 | 0.659013 | 0.794802 | 0.270541 |
11 | 0.015484 | 0.567598 | 0.043682 |
12 | 0.957620 | 0.967676 | 0.063608 |
13 | 0.102506 | 0.490077 | 0.235902 |
14 | 0.099083 | 0.778190 | 0.451824 |
18 | 0.330299 | 0.984615 | 0.346554 |
21 | 0.504627 | 0.716272 | 0.386102 |
24 | 0.507248 | 0.136465 | 0.463764 |
25 | 0.421517 | 0.814806 | 0.449040 |
26 | 0.275373 | 0.935430 | 0.525679 |
28 | 0.779142 | 0.063435 | 0.120807 |
29 | 0.618392 | 0.535934 | 0.554632 |
31 | 0.616251 | 0.034984 | 0.342615 |
33 | 0.009574 | 0.195987 | 0.221378 |
35 | 0.721609 | 0.518311 | 0.561978 |
36 | 0.316993 | 0.678054 | 0.163737 |
37 | 0.494355 | 0.499986 | 0.560351 |
39 | 0.584863 | 0.881738 | 0.481162 |
43 | 0.160369 | 0.402388 | 0.208208 |
45 | 0.002698 | 0.576528 | 0.070493 |
47 | 0.764883 | 0.778927 | 0.494559 |
48 | 0.868643 | 0.392903 | 0.109240 |
49 | 0.058928 | 0.350504 | 0.497170 |
50 | 0.373490 | 0.783554 | 0.335720 |
55 | 0.638066 | 0.442382 | 0.173654 |
56 | 0.837218 | 0.722685 | 0.454352 |
... | ... | ... | ... |
943 | 0.322268 | 0.957496 | 0.108147 |
944 | 0.384463 | 0.490386 | 0.245737 |
945 | 0.382611 | 0.726888 | 0.345724 |
947 | 0.713337 | 0.828064 | 0.364005 |
948 | 0.818703 | 0.445825 | 0.281585 |
951 | 0.968651 | 0.897188 | 0.368103 |
952 | 0.136136 | 0.431300 | 0.543917 |
954 | 0.846105 | 0.064527 | 0.200963 |
955 | 0.708107 | 0.857570 | 0.475146 |
957 | 0.595819 | 0.060763 | 0.294676 |
958 | 0.268046 | 0.790128 | 0.342255 |
959 | 0.116645 | 0.968789 | 0.493773 |
967 | 0.073665 | 0.204168 | 0.286095 |
968 | 0.205796 | 0.596242 | 0.468190 |
970 | 0.378107 | 0.687434 | 0.567923 |
971 | 0.876770 | 0.443219 | 0.236627 |
972 | 0.486757 | 0.416836 | 0.524889 |
974 | 0.838247 | 0.279468 | 0.333581 |
975 | 0.762230 | 0.352878 | 0.550439 |
976 | 0.044568 | 0.680916 | 0.350743 |
981 | 0.480849 | 0.321984 | 0.233431 |
982 | 0.491794 | 0.056681 | 0.429988 |
983 | 0.278019 | 0.105290 | 0.435492 |
986 | 0.602675 | 0.966963 | 0.338542 |
987 | 0.051971 | 0.105833 | 0.132917 |
991 | 0.632913 | 0.807060 | 0.540686 |
992 | 0.035006 | 0.526970 | 0.058584 |
993 | 0.368957 | 0.395593 | 0.210440 |
997 | 0.355928 | 0.924330 | 0.224949 |
998 | 0.923060 | 0.834740 | 0.275359 |
559 rows × 3 columns
- 检测过滤缺失值
- dropna
- fillna
- 检测过滤重复值
- drop_duplicated(keep)
- 检测过滤异常值
- 得到鉴定异常值的条件
- 将异常值对应的行删除
4. 排序
使用.take()函数排序
- take()函数接受一个索引列表,用数字表示,使得df根据列表中索引的顺序进行排序
- eg:df.take([1,3,4,2,5])
可以借助np.random.permutation()函数随机排序
np.random.permutation(1000) # 将0-999进行随机排列
array([956, 614, 993, 437, 371, 215, 579, 282, 301, 646, 893, 7, 441,
539, 953, 794, 155, 370, 154, 100, 753, 793, 412, 867, 941, 998,
672, 590, 708, 1, 634, 899, 417, 242, 557, 122, 397, 850, 543,
560, 389, 896, 903, 505, 685, 334, 665, 460, 768, 937, 522, 637,
121, 605, 107, 130, 286, 532, 982, 563, 995, 89, 217, 218, 82,
781, 951, 798, 200, 947, 790, 398, 538, 411, 15, 44, 784, 205,
281, 314, 439, 132, 192, 238, 795, 470, 65, 842, 259, 426, 528,
383, 682, 750, 119, 465, 503, 278, 715, 603, 544, 265, 239, 569,
204, 616, 343, 710, 653, 256, 6, 873, 338, 27, 570, 707, 70,
73, 233, 838, 799, 266, 859, 279, 136, 479, 724, 870, 611, 574,
564, 655, 177, 39, 253, 148, 471, 317, 661, 851, 69, 523, 513,
928, 650, 23, 582, 622, 814, 959, 723, 938, 612, 912, 865, 402,
638, 80, 962, 214, 983, 194, 680, 758, 29, 74, 86, 102, 583,
695, 580, 835, 931, 832, 454, 258, 493, 967, 670, 555, 494, 501,
581, 591, 179, 354, 118, 671, 380, 732, 229, 719, 623, 874, 495,
944, 900, 123, 250, 628, 244, 872, 731, 625, 586, 57, 752, 596,
827, 775, 841, 163, 394, 833, 153, 669, 295, 826, 384, 890, 711,
60, 141, 237, 198, 404, 463, 712, 960, 749, 510, 866, 609, 26,
169, 372, 459, 365, 949, 124, 733, 12, 257, 668, 878, 487, 138,
652, 300, 219, 413, 445, 193, 207, 337, 779, 77, 95, 693, 812,
409, 33, 490, 992, 9, 167, 358, 743, 369, 99, 817, 542, 706,
289, 589, 666, 927, 391, 761, 844, 452, 66, 830, 498, 968, 689,
329, 508, 526, 335, 884, 129, 972, 507, 480, 274, 110, 425, 500,
388, 418, 869, 769, 251, 863, 456, 112, 247, 304, 478, 481, 429,
741, 241, 347, 37, 673, 427, 285, 415, 59, 853, 144, 822, 125,
455, 64, 332, 71, 971, 763, 804, 19, 191, 918, 608, 61, 327,
137, 116, 746, 482, 828, 766, 691, 424, 727, 468, 633, 302, 861,
848, 134, 704, 491, 320, 280, 660, 375, 846, 359, 987, 511, 342,
307, 399, 76, 825, 11, 28, 961, 485, 451, 675, 457, 618, 554,
551, 885, 531, 880, 534, 160, 607, 367, 374, 797, 910, 970, 595,
575, 756, 90, 897, 801, 49, 140, 985, 512, 577, 922, 168, 225,
360, 315, 350, 919, 231, 911, 631, 31, 774, 103, 186, 892, 293,
483, 149, 860, 887, 93, 340, 744, 908, 52, 196, 222, 955, 3,
930, 571, 484, 156, 50, 843, 599, 506, 936, 703, 881, 273, 520,
41, 85, 328, 223, 48, 492, 97, 56, 36, 974, 924, 656, 58,
649, 92, 114, 62, 173, 984, 973, 346, 573, 996, 597, 990, 667,
206, 917, 213, 272, 462, 686, 469, 472, 236, 643, 787, 224, 120,
255, 24, 171, 94, 904, 771, 344, 556, 981, 593, 988, 271, 762,
363, 254, 535, 361, 979, 303, 692, 964, 504, 150, 894, 349, 796,
714, 525, 943, 785, 260, 145, 292, 718, 811, 234, 641, 403, 818,
999, 461, 778, 802, 901, 352, 40, 515, 32, 877, 664, 323, 966,
635, 905, 754, 940, 810, 182, 75, 442, 308, 262, 776, 592, 267,
203, 294, 657, 34, 414, 405, 232, 151, 373, 601, 14, 807, 467,
421, 43, 935, 430, 287, 313, 283, 152, 516, 530, 356, 559, 518,
644, 889, 977, 521, 548, 381, 674, 929, 0, 916, 246, 540, 297,
67, 980, 422, 117, 772, 53, 13, 91, 46, 423, 509, 21, 128,
598, 115, 610, 679, 783, 264, 78, 270, 824, 311, 648, 220, 636,
226, 658, 886, 227, 268, 773, 620, 529, 864, 502, 567, 713, 963,
366, 210, 333, 249, 600, 701, 2, 640, 407, 745, 942, 113, 87,
390, 159, 188, 948, 957, 488, 351, 288, 245, 431, 248, 164, 767,
839, 702, 803, 792, 594, 837, 489, 934, 684, 386, 629, 519, 876,
63, 448, 98, 858, 378, 298, 368, 453, 25, 868, 624, 79, 133,
902, 906, 428, 401, 162, 157, 728, 950, 662, 190, 496, 568, 975,
952, 627, 909, 994, 131, 780, 751, 883, 871, 319, 722, 199, 536,
209, 821, 318, 290, 393, 35, 325, 187, 786, 681, 284, 514, 331,
647, 855, 143, 989, 642, 96, 676, 986, 561, 602, 336, 20, 379,
847, 735, 954, 645, 547, 357, 447, 435, 739, 228, 566, 305, 353,
158, 755, 716, 730, 856, 127, 47, 392, 862, 809, 720, 760, 432,
243, 932, 208, 382, 585, 747, 111, 836, 736, 700, 705, 615, 355,
18, 330, 820, 8, 857, 184, 175, 221, 737, 524, 697, 436, 395,
764, 939, 104, 759, 819, 240, 659, 147, 269, 387, 420, 621, 364,
926, 201, 549, 165, 696, 742, 997, 181, 277, 726, 10, 683, 991,
291, 81, 126, 68, 920, 808, 572, 740, 533, 699, 72, 146, 230,
888, 5, 606, 466, 263, 458, 898, 604, 385, 805, 105, 211, 945,
958, 721, 823, 376, 497, 545, 576, 738, 626, 852, 449, 541, 444,
406, 976, 88, 815, 552, 166, 183, 178, 438, 553, 84, 83, 717,
651, 782, 678, 324, 584, 42, 687, 517, 195, 106, 101, 933, 434,
348, 440, 587, 310, 923, 663, 921, 499, 565, 296, 38, 891, 895,
316, 30, 978, 677, 170, 322, 613, 546, 527, 630, 476, 174, 51,
816, 845, 185, 108, 17, 321, 813, 806, 109, 882, 197, 550, 907,
339, 698, 965, 362, 729, 914, 791, 694, 475, 879, 486, 309, 748,
326, 688, 202, 410, 915, 690, 854, 377, 341, 788, 22, 777, 275,
473, 261, 400, 45, 54, 135, 770, 189, 946, 562, 925, 537, 789,
312, 829, 725, 252, 800, 578, 446, 55, 419, 396, 4, 558, 212,
831, 450, 299, 161, 617, 345, 306, 757, 709, 180, 235, 433, 840,
477, 913, 474, 734, 408, 443, 834, 654, 875, 172, 632, 416, 16,
216, 464, 139, 619, 588, 969, 176, 276, 142, 639, 765, 849])
# 行排序与列排序均随机
df.take(indices=np.random.permutation(1000),axis=0).take(indices=np.random.permutation(3),axis=1)
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
A | C | B | |
---|---|---|---|
810 | 0.056462 | 0.836914 | 0.105296 |
2 | 0.140999 | 0.752930 | 0.921772 |
721 | 0.941986 | 0.206568 | 0.283233 |
803 | 0.302248 | 0.027969 | 0.946815 |
46 | 0.576391 | 0.604795 | 0.199215 |
224 | 0.091563 | 0.448896 | 0.460941 |
682 | 0.081894 | 0.360009 | 0.174743 |
894 | 0.758221 | 0.311932 | 0.054626 |
389 | 0.951142 | 0.174418 | 0.764700 |
441 | 0.283697 | 0.577370 | 0.698306 |
350 | 0.623445 | 0.681211 | 0.547610 |
53 | 0.186217 | 0.617344 | 0.339724 |
467 | 0.231915 | 0.540558 | 0.972880 |
962 | 0.543442 | 0.895628 | 0.444214 |
598 | 0.516110 | 0.047393 | 0.670478 |
337 | 0.022056 | 0.222698 | 0.010719 |
481 | 0.182805 | 0.301250 | 0.652167 |
277 | 0.127561 | 0.749532 | 0.170472 |
162 | 0.767004 | 0.261541 | 0.381312 |
250 | 0.847071 | 0.344957 | 0.539958 |
416 | 0.369274 | 0.495600 | 0.393579 |
425 | 0.228196 | 0.273655 | 0.114908 |
843 | 0.394974 | 0.904397 | 0.875514 |
893 | 0.451844 | 0.336345 | 0.787189 |
492 | 0.516625 | 0.499929 | 0.350670 |
453 | 0.218878 | 0.957251 | 0.308231 |
186 | 0.611224 | 0.981765 | 0.809362 |
243 | 0.092659 | 0.374212 | 0.658671 |
522 | 0.773774 | 0.436375 | 0.037527 |
961 | 0.172133 | 0.762221 | 0.800747 |
... | ... | ... | ... |
624 | 0.587435 | 0.183552 | 0.831386 |
675 | 0.636248 | 0.542904 | 0.918788 |
861 | 0.519202 | 0.322943 | 0.315798 |
989 | 0.951651 | 0.942564 | 0.002912 |
136 | 0.940608 | 0.069835 | 0.504026 |
950 | 0.294872 | 0.712361 | 0.821118 |
529 | 0.648302 | 0.860493 | 0.626701 |
833 | 0.783501 | 0.823326 | 0.357173 |
173 | 0.181090 | 0.697154 | 0.906783 |
615 | 0.177069 | 0.732558 | 0.275658 |
182 | 0.091686 | 0.262477 | 0.340532 |
913 | 0.069850 | 0.903723 | 0.102737 |
417 | 0.353772 | 0.345310 | 0.618327 |
487 | 0.697415 | 0.083422 | 0.921608 |
345 | 0.331507 | 0.295755 | 0.995060 |
978 | 0.323142 | 0.978349 | 0.686965 |
197 | 0.947977 | 0.235533 | 0.295503 |
133 | 0.428408 | 0.963203 | 0.485624 |
214 | 0.861541 | 0.840486 | 0.435903 |
640 | 0.453934 | 0.807253 | 0.940066 |
977 | 0.031232 | 0.918445 | 0.029839 |
698 | 0.780159 | 0.042282 | 0.127449 |
427 | 0.326411 | 0.101616 | 0.915007 |
898 | 0.768911 | 0.231629 | 0.451036 |
77 | 0.718200 | 0.682757 | 0.986735 |
865 | 0.553171 | 0.535761 | 0.088467 |
513 | 0.203601 | 0.908238 | 0.116113 |
711 | 0.655778 | 0.164941 | 0.472295 |
685 | 0.012172 | 0.035356 | 0.501114 |
801 | 0.891855 | 0.355426 | 0.682663 |
1000 rows × 3 columns
- np.random.permutation(x)可以生成x个从0-(x-1)的随机数列
df.take(indices=np.random.permutation(1000),axis=0).take(indices=np.random.permutation(3),axis=1)[0:5]
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
B | A | C | |
---|---|---|---|
839 | 0.817163 | 0.346661 | 0.113644 |
708 | 0.644456 | 0.327089 | 0.081710 |
244 | 0.852833 | 0.366820 | 0.028656 |
728 | 0.627186 | 0.850947 | 0.375577 |
238 | 0.784179 | 0.764240 | 0.579280 |
随机抽样
当DataFrame规模足够大时,直接使用np.random.permutation(x)函数,就配合take()函数实现随机抽样
5. 数据分类处理【重点】
数据聚合是数据处理的最后一步,通常是要使每一个数组生成一个单一的数值。
数据分类处理:
- 分组:先把数据分为几组
- 用函数处理:为不同组的数据应用不同的函数以转换数据
- 合并:把不同组得到的结果合并起来
数据分类处理的核心:
- groupby()函数
- groups属性查看分组情况
- eg: df.groupby(by='item').groups
分组
df = DataFrame({'item':['Apple','Banana','Orange','Banana','Orange','Apple'],
'price':[4,3,3,2.5,4,2],
'color':['red','yellow','yellow','green','green','green'],
'weight':[12,20,50,30,20,44]})
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
color | item | price | weight | |
---|---|---|---|---|
0 | red | Apple | 4.0 | 12 |
1 | yellow | Banana | 3.0 | 20 |
2 | yellow | Orange | 3.0 | 50 |
3 | green | Banana | 2.5 | 30 |
4 | green | Orange | 4.0 | 20 |
5 | green | Apple | 2.0 | 44 |
- 使用groupby实现分组
df.groupby(by='item',axis=0)
<pandas.core.groupby.DataFrameGroupBy object at 0x00000235AA6F6C18>
- 使用groups查看分组情况
# 该函数可以进行数据的分组,但是不显示分组情况
df.groupby(by='item',axis=0).groups
{'Apple': Int64Index([0, 5], dtype='int64'),
'Banana': Int64Index([1, 3], dtype='int64'),
'Orange': Int64Index([2, 4], dtype='int64')}
- 分组后的聚合操作:分组后的成员中可以被进行运算的值会进行运算,不能被运算的值不进行运算
# 给df创建一个新列,内容为各个水果的平均价格
df.groupby(by='item',axis=0).mean()['price']
item
Apple 3.00
Banana 2.75
Orange 3.50
Name: price, dtype: float64
mean_price_series = df.groupby(by='item',axis=0)['price'].mean()
mean_price_series
item
Apple 3.00
Banana 2.75
Orange 3.50
Name: price, dtype: float64
# 映射关系表
dic = mean_price_series.to_dict()
df['mean_price'] = df['item'].map(dic)
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
color | item | price | weight | mean_price | |
---|---|---|---|---|---|
0 | red | Apple | 4.0 | 12 | 3.00 |
1 | yellow | Banana | 3.0 | 20 | 2.75 |
2 | yellow | Orange | 3.0 | 50 | 3.50 |
3 | green | Banana | 2.5 | 30 | 2.75 |
4 | green | Orange | 4.0 | 20 | 3.50 |
5 | green | Apple | 2.0 | 44 | 3.00 |
计算出苹果的平均价格
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
color | item | price | weight | |
---|---|---|---|---|
0 | red | Apple | 4.0 | 12 |
1 | yellow | Banana | 3.0 | 20 |
2 | yellow | Orange | 3.0 | 50 |
3 | green | Banana | 2.5 | 30 |
4 | green | Orange | 4.0 | 20 |
5 | green | Apple | 2.0 | 44 |
按颜色查看各种颜色的水果的平均价格
汇总:将各种颜色水果的平均价格和df进行汇总
df['color_mean_price'] = df['color'].map(df.groupby(by='color')['price'].mean().to_dict())
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
color | item | price | weight | mean_price | color_mean_price | |
---|---|---|---|---|---|---|
0 | red | Apple | 4.0 | 12 | 3.00 | 4.000000 |
1 | yellow | Banana | 3.0 | 20 | 2.75 | 3.000000 |
2 | yellow | Orange | 3.0 | 50 | 3.50 | 3.000000 |
3 | green | Banana | 2.5 | 30 | 2.75 | 2.833333 |
4 | green | Orange | 4.0 | 20 | 3.50 | 2.833333 |
5 | green | Apple | 2.0 | 44 | 3.00 | 2.833333 |
6.高级数据聚合
使用groupby分组后,也可以使用transform和apply提供自定义函数实现更多的运算
- df.groupby('item')['price'].sum() <==> df.groupby('item')['price'].apply(sum)
- transform和apply都会进行运算,在transform或者apply中传入函数即可
- transform和apply也可以传入一个lambda表达式
df.groupby(by='item')['price'].mean()
item
Apple 3.00
Banana 2.75
Orange 3.50
Name: price, dtype: float64
def my_mean(s):
sum = 0
for i in s:
sum += i
return sum/len(s)
# 使用apply函数求出水果的平均价格
df.groupby(by='item')['price'].apply(my_mean)
item
Apple 3.00
Banana 2.75
Orange 3.50
Name: price, dtype: float64
# 使用transform函数求出水果的平均价格
df.groupby(by='item')['price'].transform(my_mean)
0 3.00
1 2.75
2 3.50
3 2.75
4 3.50
5 3.00
Name: price, dtype: float64
Pandas的高级操作的更多相关文章
- 数据分析05 /pandas的高级操作
数据分析05 /pandas的高级操作 目录 数据分析05 /pandas的高级操作 1. 替换操作 2. 映射操作 3. 运算工具 4. 映射索引 / 更改之前索引 5. 排序实现的随机抽样/打乱表 ...
- 数据分析06 /pandas高级操作相关案例:人口案例分析、2012美国大选献金项目数据分析
数据分析06 /pandas高级操作相关案例:人口案例分析.2012美国大选献金项目数据分析 目录 数据分析06 /pandas高级操作相关案例:人口案例分析.2012美国大选献金项目数据分析 1. ...
- pandas高级操作
pandas高级操作 import numpy as np import pandas as pd from pandas import DataFrame,Series 替换操作 替换操作可以同步作 ...
- 一句Python,一句R︱pandas模块——高级版data.frame
先学了R,最近刚刚上手python,所以想着将python和R结合起来互相对比来更好理解python.最好就是一句python,对应写一句R. pandas可谓如雷贯耳,数据处理神器. 以下符号: = ...
- pandas函数高级
一.处理丢失数据 有两种丢失数据: None np.nan(NaN) 1. None None是Python自带的,其类型为python object.因此,None不能参与到任何计算中. #查看No ...
- [Session] SessionHelper2---C#关于Session高级操作帮助类 (转载)
点击下载 SessionHelper2.rar 这个类是关于Session的一些高级操作1.添加时限制时间2.读取对象3.读取数据等等看下面代码吧 /// <summary> /// 联系 ...
- cassandra高级操作之索引、排序以及分页
本次就给大家讲讲cassandra的高级操作:索引.排序和分页:处于性能的考虑,cassandra对这些支持都比较简单,所以我们不能希望cassandra完全适用于我们的逻辑,而是应该将我们的逻辑设计 ...
- MySQL学习笔记_9_MySQL高级操作(上)
MySQL高级操作(上) 一.MySQL表复制 create table t2 like t1; #复制表结构,t2可以学习到t1所有的表结构 insert into t2 ...
- MySQL学习笔记_10_MySQL高级操作(下)
MySQL高级操作(下) 五.MySQL预处理语句 1.设置预处理stmt,传递一个数据作为where的判断条件 prepare stmt from "select * from table ...
随机推荐
- 基于谷歌开源的TensorFlow Object Detection API视频物体识别系统搭建自己的应用(四)
本章主要内容是利用mqtt.多线程.队列实现模型一次加载,批量图片识别分类功能 目录结构如下: mqtt连接及多线程队列管理 MqttManager.py # -*- coding:utf8 -*- ...
- CA认证机制的简明解释
公钥机制面临的问题: 假冒身份发布公钥! 可以用CA来认证公钥的身份.CA有点像公安局,公钥就像身份证.公安局可以向任何合法用户颁发身份证以证明其合法身份.第三方只要识别身份证的真伪就能判断身份证持有 ...
- php $_SERVER 中的 QUERY_STRING和REQUEST_URI
index.php <?php print_r($_GET); parse_str($_SERVER['QUERY_STRING'],$get); print_r($get); print_r( ...
- jQuery入门、jQuery选择器、jQuery操作
一.什么是jQuery及如何使用 1.1 jQuery 简介 jQuery是一个兼容多浏览器的javascript函数库(把我们常用的一些功能进行了封装,方便我们来调用,提高我们的开发效率.),核心理 ...
- MySQL数据库的自动备份与数据库被破坏后的恢复(2)
测试自动备份正常运转与否(备份恢复的方法) 这里,以通过实际操作的过程来介绍问题出现后的恢复方法. [1] 当数据库被删除后的恢复方法 首先建立一个测试用的数据库. [root@CentOS ~]# ...
- Redirecting to /bin/systemctl restart mysql. service Failed to restart mysql.service: Unit not found.
使用如下命令操作mysql即可: systemctl restart mysqld.service systemctl start mysqld.service systemctl stop mysq ...
- redis学习 --Hash
一:我们可以将Redis中的Hash类型看成具有String Key和String Value的map容器.所以该类型非常适合于存储值对象的信息.如Username.Password和Age等.如果H ...
- php中substr_compare()区分大小写吗
PHP substr_compare() 函数 定义和用法 substr_compare() 函数从指定的开始位置比较两个字符串. 提示:该函数是二进制安全且选择性地对大小写敏感(区分大小写). 语法 ...
- 一道装呀(状压)DP
generator 题目描述: 自己的数学太差了,居然没看出来和这两个是相同的: 啊啊啊: 所以装呀一下就好了: #include<iostream> #include<cstdio ...
- Python_010(迭代器)
一.函数名的运用 1.函数名的内存地址 def func(): print("英雄联盟") print(func) #输出结果: <function func at 0x00 ...