最长公共上升子序列 (LIS+LCS+记录)
【题目描述】
给出两个序列,求出最长公共上升子序列的长度,并输出其中一个解。
【题目链接】
http://noi.openjudge.cn/ch0206/2000/
【算法】
经典问题,结合了LIS和LCS。
【代码】
#include <bits/stdc++.h>
using namespace std;
int len1,len2,i,j,ans,ri,rj;
int s1[],s2[],rec[][],dp[][];
void print(int x,int y)
{
switch(rec[x][y]) {
case -: print(x-,y); break;
case : printf("%d",s2[y]); break;
default: print(x-,rec[x][y]),printf(" %d",s2[y]);
}
}
int main()
{
scanf("%d",&len1);
for(i=;i<=len1;i++) scanf("%d",&s1[i]);
scanf("%d",&len2);
for(i=;i<=len2;i++) scanf("%d",&s2[i]);
for(i=;i<=len1;i++) {
int val=,tmp=;
for(j=;j<=len2;j++) {
if(s1[i]==s2[j]) dp[i][j]=val+,rec[i][j]=tmp;
else dp[i][j]=dp[i-][j],rec[i][j]=-;
if(s1[i]>s2[j]&&dp[i-][j]>val) val=dp[i-][j],tmp=j;
if(dp[i][j]>ans) ans=dp[i][j],ri=i,rj=j;
}
}
printf("%d\n",ans);
print(ri,rj);
return ;
}
最长公共上升子序列 (LIS+LCS+记录)的更多相关文章
- 【线型DP模板】最上上升子序列(LIS),最长公共子序列(LCS),最长公共上升子序列(LCIS)
BEGIN LIS: 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序 ...
- 最长递增子序列(lis)最长公共子序列(lcs) 最长公共上升子序列(lics)
lis: 复杂度nlgn #include<iostream> #include<cstdio> using namespace std; ],lis[],res=; int ...
- LCIS最长公共上升子序列
最长公共上升子序列LCIS,如字面意思,就是在对于两个数列A和B的最长的单调递增的公共子序列. 这道题目是LCS和LIS的综合. 在LIS中,我们通过两重循环枚举当序列以当前位置为结尾时,A序列中当前 ...
- dp(最长公共上升子序列)
This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence ...
- ZOJ 2432 Greatest Common Increasing Subsequence(最长公共上升子序列+路径打印)
Greatest Common Increasing Subsequence 题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problem ...
- [ACM_动态规划] UVA 12511 Virus [最长公共递增子序列 LCIS 动态规划]
Virus We have a log file, which is a sequence of recorded events. Naturally, the timestamps are s ...
- HDU 4512 最长公共上升子序列
各种序列复习: (1)最长上升子序列. 1.这个问题用动态规划就很好解决了,设dp[i]是以第i个数字结尾的上升子序列的最长长度.那么方程可以是dp[i]=max(dp[j]+1).(j<i). ...
- LCIS 最长公共上升子序列问题DP算法及优化
一. 知识简介 学习 LCIS 的预备知识: 动态规划基本思想, LCS, LIS 经典问题:给出有 n 个元素的数组 a[] , m 个元素的数组 b[] ,求出它们的最长上升公共子序列的长度. 例 ...
- hdu 1423 最长公共递增子序列 LCIS
最长公共上升子序列(LCIS)的O(n^2)算法 预备知识:动态规划的基本思想,LCS,LIS. 问题:字符串a,字符串b,求a和b的LCIS(最长公共上升子序列). 首先我们可以看到,这个问题具有相 ...
随机推荐
- Kconfig的简单例子
https://cloud.tencent.com/developer/article/1431908 使用Kconfig时,需要注意的地方 1.在Kconfig中定义的配置宏,前缀都没有" ...
- bui拍照上传、相册上传注意事项
1.控制台输入 bui.currentPlatform 可查看工程项目基于什么平台 如:bingotouch 2.如果是 bingotouch , 在 index.js 或者其它配置的地方, 加上 ...
- linux运维、架构之路-数据库迁移
一.wordpress搭建 1.wordpress下载部署 cd /server/tools/ wget https://cn.wordpress.org/wordpress-4.8.1-zh_CN. ...
- locate 安装
locate http.conf locate apache2.conf .运行locate $ locate -bash: locate: command not found 提示找不到命令 .安装 ...
- 史上最全最实用HBuilder快捷键大全
史上最全最实用HBuilder快捷键大全 一.文件操作二.编辑操作三.插入操作四.转义操作五.选择操作六.跳转操作七.查找操作八.运行九.视图一.文件操作新建菜单: ctrl + N新建: ctrl ...
- NOIp 数学知识点总结
推荐阅读 NOIp 基础数论知识点总结: https://www.cnblogs.com/greyqz/p/number.html 排列组合 常用公式 排列:\[\displaystyle A_n^m ...
- 转载:TypeError: Cannot read property 'compilation' of undefined vue 打包运行npm run build 报错
转载自:https://www.jianshu.com/p/3f8f60e01797 运行npm run build打包时,报错如下: 我的package.json如下: { ... " ...
- SecondContract 接口类
package com.test.mvp.mvpdemo.mvp.v6; import com.test.mvp.mvpdemo.mvp.v6.basemvp.IBasePresenter;impor ...
- Emmet基本使用教程
转载来自:http://www.iteye.com/news/27580 Emmet的前身是大名鼎鼎的Zen coding,如果你从事Web前端开发的话,对该插件一定不会陌生.它使用仿CSS选择器的语 ...
- 牛客提高D4t2 卖羊驼
分析 不难想到dp[i][j]表示前i个数分了j组的最大值 我们发现这个dp状态有决策单调性 g[i][j]表示对于第i个数它的第j位最近出现的位置 每次一定从这些点转移 预处理即可 似乎还可以做到1 ...