题目链接:戳我

生成函数的入门题吧。

我们可以把条件限制转化为生成函数,然后用第i项的系数来表示一共使用n块石头的方案个数。
(你问我为什么?你可以自己演算一下,或者去看大佬的博客-->这里面讲的是生成函数基础)

这些约束条件的生成函数分别为

  • \(1+x^6+x^{12}+...=\frac{1}{1-x^6}\)
  • \(1+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9=\frac{1-x^{10}}{1-x}\)
  • \(1+x+x^2+x^3+x^4+x^5=\frac{1-x^6}{1-x}\)
  • \(1+x^4+x^8+...=\frac{1}{1-x^4}\)
  • \(1+x=\frac{1-x^2}{x}\)
  • \(1+x^8+x^{16}+...=\frac{1}{1-x^8}\)
  • \(1+x^{10}+...=\frac{1}{1-x^{10}}\)
  • \(1+x+x^2+x^3=\frac{1-x^4}{1-x}\)
    然后乘起来就是\(\frac{1}{(1-x)^5}\)

我们展开就是答案\(C_{n+4}^{4}\)

至于为什么转化到了组合数呢?因为5个\(\frac{1}{1-x}\),就相当于五个\(1+x+x^2+x^3+.....\)
我们取次数等于n的系数就行了,而这就相当于在这5个里面找出一些不同次数(次数非负),然后它们的和为n。然后用隔板法就可以推出来了。

Luogu2000 拯救世界的更多相关文章

  1. 洛谷P2000 拯救世界(生成函数)

    题面 题目链接 Sol 生成函数入门题 至多为\(k\)就是\(\frac{1-x^{k+1}}{1-x}\) \(k\)的倍数就是\(\frac{1}{1-x^k}\) 化简完了就只剩下一个\(\f ...

  2. luogu P2000 拯救世界

    嘟嘟嘟 题目有点坑,要你求的多少大阵指的是召唤kkk的大阵数 * lzn的大阵数,不是相加. 看到这个限制条件,显然要用生成函数推一推. 比如第一个条件"金神石的块数必须是6的倍数" ...

  3. 【洛谷】P2000 拯救世界

    题解 小迪的blog : https://www.cnblogs.com/RabbitHu/p/9178645.html 请大家点推荐并在sigongzi的评论下面点支持谢谢! 掌握了小迪生成函数的有 ...

  4. Luogu 2000 拯救世界

    从胡小兔的博客那里过来的,简单记一下生成函数. 生成函数 数列$\{1, 1, 1, 1, \cdots\}$的生成函数是$f(x) = 1 + x + x^2 + x^3 + \cdots$,根据等 ...

  5. 清北学堂模拟赛d7t6 拯救世界

    分析:如果题目中没有环的话就是一道裸的最长路的题目,一旦有环每个城市就会被救多次火了.把有向有环图变成有向无环图只需要tarjan一边就可以了. #include <bits/stdc++.h& ...

  6. luogu P2000 拯救世界 生成函数_麦克劳林展开_python

    模板题. 将所有的多项式按等比数列求和公式将生成函数压缩,相乘后麦克劳林展开即可. Code: n=int(input()) print((n+1)*(n+2)*(n+3)*(n+4)//24)

  7. [LGP2000] 拯救世界

    6的倍数 1/(1-x^6) 最多9块 (1-x^10)/(1-x) 最多5块 (1-x^6)/(1-x) 4的倍数 1/(1-x^4) 最多7块 (1-x^8)/(1-x) 2的倍数 1/(1-x^ ...

  8. [题解] Luogu P2000 拯救世界

    生成函数板子题...... 要写高精,还要NTT优化......异常dl 这个并不难想啊...... 一次召唤会涉及到\(10\)个因素,全部写出来,然后乘起来就得到了答案的生成函数,输出\(n\)次 ...

  9. [洛谷P2000 拯救世界]

    生成函数版题. 考虑对于这些条件写出\(OGF\) \(1 + x^6 + x^{12} + x^{18}..... = \frac{1}{1 - x^6}\) \(1 + x + x ^ 2 + x ...

随机推荐

  1. (四)Java秒杀项目之JMeter压测

    一.JMeter入门压测 1.打开JMeter工具,选中测试计划->右键添加->线程(用户)->线程组,页面中的线程数就是并发数,页面中的Ramp-Up时间(秒)表示通过多长时间启动 ...

  2. linux_文本编译使用命令

    一:字符模式与shell命令 字符界面和图形界面 字符界面优点: 1):系统执行效率高,稳定性高,执行结果可直接返回 2):节省系统资源,对一个服务器至关重要 3):节省大量网络开销,大幅降低运行成本 ...

  3. 如何利用 CSS 的动画原理,创作一个乒乓球对打动画

    效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/rvgLzK 可交互视频教 ...

  4. 剑指Offer 1-41 代码(python实现)

    今天主要写了一下offer 1-41题,余下的稍后整理 1 """ 1 镜像二叉树: 递归 """ def mirror(root): if ...

  5. GoAccess操作手册

    名字 GoAccess - 可视化 Web 日志分析工具. 语法 goaccess [filename] [ options ... ] [-c][-M][-H][-q][-d][...] 描述 Go ...

  6. 导出excel-模版

    后台代码 public void ToExcel(){ //第一步:获取模版文件物理路径 string file_0 = Server.MapPath("/Content/Excel/Exp ...

  7. 使用@ResponseBody输出JSON

    添加jackson依赖 添加@ResponseBody 测试: 原理: 当一个处理请求的方法标记为@ResponseBody时,就说明该方法需要输出其他视图(json.xml),SpringMVC通过 ...

  8. 总线(bus)简介

    内容来自于<Computer Organization>,这是我的一篇学习笔记

  9. k8s的一些基本命令

    kubernetes用到的一些命令 kubectl管理工具以及命令 基础命令:create,delete,get,run,expose,set,explain,edit. create命令:根据文件或 ...

  10. WebSocket的兼容性

    https://github.com/sockjs/sockjs-client https://socket.io/ https://github.com/gimite/web-socket-js h ...