题目链接:戳我

生成函数的入门题吧。

我们可以把条件限制转化为生成函数,然后用第i项的系数来表示一共使用n块石头的方案个数。
(你问我为什么?你可以自己演算一下,或者去看大佬的博客-->这里面讲的是生成函数基础)

这些约束条件的生成函数分别为

  • \(1+x^6+x^{12}+...=\frac{1}{1-x^6}\)
  • \(1+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9=\frac{1-x^{10}}{1-x}\)
  • \(1+x+x^2+x^3+x^4+x^5=\frac{1-x^6}{1-x}\)
  • \(1+x^4+x^8+...=\frac{1}{1-x^4}\)
  • \(1+x=\frac{1-x^2}{x}\)
  • \(1+x^8+x^{16}+...=\frac{1}{1-x^8}\)
  • \(1+x^{10}+...=\frac{1}{1-x^{10}}\)
  • \(1+x+x^2+x^3=\frac{1-x^4}{1-x}\)
    然后乘起来就是\(\frac{1}{(1-x)^5}\)

我们展开就是答案\(C_{n+4}^{4}\)

至于为什么转化到了组合数呢?因为5个\(\frac{1}{1-x}\),就相当于五个\(1+x+x^2+x^3+.....\)
我们取次数等于n的系数就行了,而这就相当于在这5个里面找出一些不同次数(次数非负),然后它们的和为n。然后用隔板法就可以推出来了。

Luogu2000 拯救世界的更多相关文章

  1. 洛谷P2000 拯救世界(生成函数)

    题面 题目链接 Sol 生成函数入门题 至多为\(k\)就是\(\frac{1-x^{k+1}}{1-x}\) \(k\)的倍数就是\(\frac{1}{1-x^k}\) 化简完了就只剩下一个\(\f ...

  2. luogu P2000 拯救世界

    嘟嘟嘟 题目有点坑,要你求的多少大阵指的是召唤kkk的大阵数 * lzn的大阵数,不是相加. 看到这个限制条件,显然要用生成函数推一推. 比如第一个条件"金神石的块数必须是6的倍数" ...

  3. 【洛谷】P2000 拯救世界

    题解 小迪的blog : https://www.cnblogs.com/RabbitHu/p/9178645.html 请大家点推荐并在sigongzi的评论下面点支持谢谢! 掌握了小迪生成函数的有 ...

  4. Luogu 2000 拯救世界

    从胡小兔的博客那里过来的,简单记一下生成函数. 生成函数 数列$\{1, 1, 1, 1, \cdots\}$的生成函数是$f(x) = 1 + x + x^2 + x^3 + \cdots$,根据等 ...

  5. 清北学堂模拟赛d7t6 拯救世界

    分析:如果题目中没有环的话就是一道裸的最长路的题目,一旦有环每个城市就会被救多次火了.把有向有环图变成有向无环图只需要tarjan一边就可以了. #include <bits/stdc++.h& ...

  6. luogu P2000 拯救世界 生成函数_麦克劳林展开_python

    模板题. 将所有的多项式按等比数列求和公式将生成函数压缩,相乘后麦克劳林展开即可. Code: n=int(input()) print((n+1)*(n+2)*(n+3)*(n+4)//24)

  7. [LGP2000] 拯救世界

    6的倍数 1/(1-x^6) 最多9块 (1-x^10)/(1-x) 最多5块 (1-x^6)/(1-x) 4的倍数 1/(1-x^4) 最多7块 (1-x^8)/(1-x) 2的倍数 1/(1-x^ ...

  8. [题解] Luogu P2000 拯救世界

    生成函数板子题...... 要写高精,还要NTT优化......异常dl 这个并不难想啊...... 一次召唤会涉及到\(10\)个因素,全部写出来,然后乘起来就得到了答案的生成函数,输出\(n\)次 ...

  9. [洛谷P2000 拯救世界]

    生成函数版题. 考虑对于这些条件写出\(OGF\) \(1 + x^6 + x^{12} + x^{18}..... = \frac{1}{1 - x^6}\) \(1 + x + x ^ 2 + x ...

随机推荐

  1. 【DP 好题】hihoCoder #1520 古老数字

    题目链接 这道题的要点是状态转移的顺序. 要从低位向高位进行状态转移. Implementation string s; cin >> s; reverse(all(s)); int x, ...

  2. 在Powershell中使用Group-Object和-GroupBy

    使用Group-Object(group)按组统计 PS C:\> Get-Command -Module Microsoft.PowerShell.LocalAccounts | group ...

  3. JVM - Java虚拟机规范官方文档

    Java虚拟机规范官方文档    

  4. 【electronjs入门教程 】electronjs 介绍

    官网地址:https://electronjs.org/ 官网文档地址:https://electronjs.org/docs/ electronjs使用 JavaScript, HTML 和 CSS ...

  5. k8s的一些基本命令

    kubernetes用到的一些命令 kubectl管理工具以及命令 基础命令:create,delete,get,run,expose,set,explain,edit. create命令:根据文件或 ...

  6. 06 Nginx

    1.检查linux上是否通过yum安装了nginx rpm -qi nginx 2.解决安装nginx所依赖包 yum install gcc patch libffi-devel python-de ...

  7. Uncaught SyntaxError: Unexpected identifier

    $.ajax({ //请求头 type:"POST", contentType:"application/x-www-form-urlencoded", url ...

  8. 解决 webpack 打包文件体积过大

    webpack 把我们所有的文件都打包成一个 JS 文件,这样即使你是小项目,打包后的文件也会非常大.下面就来讲下如何从多个方面进行优化. 去除不必要的插件 刚开始用 webpack 的时候,开发环境 ...

  9. Linux上安装postgres 10.5

    由于接触了华为的elk大数据平台,里面封装的是postgres ,就想着安装一下,熟悉一下postgres数据. 安装包下载:https://www.postgresql.org/ftp/source ...

  10. glsl:error C1105: cannot call a non-function

    今天写的shader编译过程中报了这个错误,而且错误行数是0.原因怎么找也找不到.后来发现原来是normalize方法写成了了normal正好和函数的形参名字一样. 特地记录一下.